DOI QR코드

DOI QR Code

A non-dimensional theoretical approach to model high-velocity impact on thick woven plates

  • Alonso, L. (Department of Chemical Technology, Energy and Mechanics, Rey Juan Carlos University) ;
  • Garcia-Gonzalez, D. (Department of Continuum Mechanics and Structural Analysis, University Carlos III of Madrid) ;
  • Navarro, C. (Department of Continuum Mechanics and Structural Analysis, University Carlos III of Madrid) ;
  • Garcia-Castillo, S.K. (Department of Continuum Mechanics and Structural Analysis, University Carlos III of Madrid)
  • Received : 2020.08.02
  • Accepted : 2021.02.19
  • Published : 2021.03.25

Abstract

A theoretical energy-based model to capture the mechanical response of thick woven composite laminates, which are used in such applications as maritime or aerospace, to high-velocity impact was developed. The dependences of the impact phenomenon on material and geometrical parameters were analysed making use of the Vaschy-Buckingham Theorem to provide a non-dimensional framework. The model was divided in three different stages splitting the physical interpretation of the perforation process: a first where different dissipative mechanisms such as compression or shear plugging were considered, a second where a transference of linear momentum was assumed and a third where only friction took place. The model was validated against experimental data along with a 3D finite element model. The numerical simulations were used to validate some of the new hypotheses assumed in the theoretical model to provide a more accurate explanation of the phenomena taking place during a high-velocity impact.

Keywords

References

  1. Alonso, L., Martinez-Hergueta, F., Garcia-Gonzalez, D., Navarro, C., Garcia-Castillo, S. and Teixeira-Dias, F. (2020), "A finite element approach to model high-velocity impact on thin woven gfrp plates", Int. J. Impact Eng., 142. https://doi.org/10.1016/j.ijimpeng.2020.103593.
  2. Alonso, L., Navarro, C. and Garcia-Castillo, S. (2018a), "Analytical models for the perforation of thick and thin thicknesses woven-laminates subjected to high-velocity impact", Compos. Part B 143, 292-300. https://doi.org/10.1016/j.compositesb.2018.01.030.
  3. Alonso, L., Navarro, C. and Garcia-Castillo, S. (2018b), "Experimental study of woven-laminates structures subjected to high-velocity impact". Mech. Adv. Mater. Struct., doi:10.1080/15376494.2018.1526354.
  4. ASTM-Standard-D695-96 (1995), Standard test method for compressive properties of rigid plastics.
  5. ASTM-Standard-D732-02 (2002), Standard test method for shear strenght of plastics by punch tool.
  6. Bai, Y., Post, N., Lesko, J. and Keller, T. (2008), "Experimental investigations on temperature-dependent thermo-physical and mechanical properties of pultruded gfrp composites", Thermochimica Apta, 469, 28-35. https://doi.org/10.1016/j.tca.2008.01.002.
  7. Braun, O. and Naumovets, A. (2005), "Nanotribology: microscopic mechanisms of friction", Surface science reports 60, 79-158. https://doi.org/10.1016/j.surfrep.2005.10.004.
  8. Briescani, L., Manes, A. and Giglio, M. (2015), "An analytical model for ballistic impacts against plain-woven fabrics with a polymeric matrix", Int. J. Impact Eng., 78, 138-149. doi:10.1016/j.ijimpeng.2015.01.001.
  9. Buitrago, B., Garcia-Castillo, S. and Barbero, E. (2010), "Experimental analysis of perforation of glass/polyester structures subjected to high-velocity impact". Mater. Lett., 64, 1052-1054. https://doi.org/10.1016/j.matlet.2010.02.007.
  10. Chang, F. and Chang, K. (1987), "A progressive damage model for laminated composites containing stress concentrations", J. Compos. Mater., 21, 834-855. https://doi.org/10./1177/002199838702100904. https://doi.org/10.1177/002199838702100904
  11. Chao Zhang, J., Sosa, C. And Bui, T. (2018), ≪meso-scale progressive damage modeling and life prediction of 3d braided composites under fatigue tension loading". Compos. Struct., 201, 62-71. https://doi.org/10.1016/j.compstruct.2018.06.021.
  12. Costas, M., Morin, D., Langseth, M., Diaz, J. and Romera, L. (2017), "Static crushing of aluminium tubes filled with pet foam and a gfrp skeleton. numerical modelling and multiobjective optimization", Int. J. Mech. Sci., 131-132, 205-217. https://doi.org/10.1016/j.ijmecsci.2017.07.004.
  13. Davila, C., Camacho, P. and Rose, C. (2005), "Failure criteria for frp laminates", J. Compos. Mater., 39, 323-345. https://doi.org/10.1080/15376494.2019.1655688.
  14. Dhari, R., Patel, N., Wang, H. and Hazell, P. (2019), "Progressive damage modeling and optimization of fibrous composites under ballistic impact loading", Mech. Adv. Mater. Struct., 1-18. https://doi.org/10.1080/15376494.2019.1655688.
  15. Ding, G., Sun, L., Wan, Z., Li, J., Pei, X. and Tang, Y., 2018. "Recognition of damage modes and hilbert-huang transform analyses of 3d braided composites", J. Compos. Sci., 2, https://doi.org/10.3390/jcs2040065.
  16. Ehsani, A. and Rezaeepazhand, J. (2016), "Stacking sequence optimization of laminated composite grid plates for maximum buckling load using genetic algorithm", Int. J. Mech.Sci., 119, 97-106. https://doi.org/101016/j.ijmecsci.2016.09.028. https://doi.org/10.1016/j.ijmecsci.2016.09.028
  17. Ferguson, R., Hinton, M. and Hiley, M. (1998), "Determining the through-thickness properties of frp materials", Compos. Sci. Technol., 58, 1411-1420. https://doi.org/10.1016/S0266-3538(98)00026-8.
  18. Garcia-Castillo, S., Lopez-Puente, J., Sanchez Saez, S., Barbero, E. and Navarro, C. (2006), "Analytical model for energy absorption capabilities of glass/polyester panels subjected to ballistic impact", Conference in Developments in Theoretical and Applied Mechanics.
  19. Garcia-Castillo, S., Sanchez-Saez, S. and Barbero, E. (2012), "Influence of areal density on the energy absorbed by thin composite plates subjected to high-velocity impacts", J. Strain Anal. Eng. Des., 47, 444-452. https://doi.org/10.1177/0309324712454996.
  20. Garcia-Gonzalez, D., Rusinek, A., Jankowiak, T. and Arias, A. (2015), "Mechanical impact behaviour of polyetherether-ketone (peek)", Compos. Struct., 124, 88-99. https://doi.org/10.1016/j.compstruct.2014.12.061.
  21. Garcia-Gonzalez, D., Zaera, R. and Arias, A. (2017), "A hyperelasticthermoviscoplastic constitutive model for semi-crystalline polymers: Application to peek under dynamic loading conditions", Int. J. Plasticity, 88, 27-52. https://doi.org/10.1016/j.ijplas.2016.09.011.
  22. Gil-Alba, R., Alonso, L., Navarro, C. and Garcia-Castillo, S. (2019), "Morphological study of damage evolution in woven-laminates subjected to high-velocity impact", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2019.1692264.
  23. Guangyong, S., Tong, S., Chen, D., Gong, Z. and Li, Q. (2018), "Mechanical properties of hybrid composites reinforced by carbon and basalt fibers", Int. J. Mech. Sci., 148, 636-651. https://doi.org/10.1016/j.ijmecsci.2018.08.007.
  24. Haro, E., Odeshi, A. and Szpunar, J. (2016), "The energy absorption behavior of hybrid composite laminates containing nano-fillers under ballistic impact", Int. J. Impact Eng., 96, 11-22. https://doi.org/10.1016/j.ijimpeng.2016.05.012.
  25. Hashin, Z. (1980), "Failure criteria for unidirectional fiber composites", J. Appl. Mech., 47, 329-334. https://doi.org/10.1115/1.3153664.
  26. Hazzard, M., Trask, R., Heisserer, U., Van Der Kamp, M. and Hallett, S. (2018), "Finite element modelling of dyneema® composites: from quasi-static rates to ballistic impact". Compos. Part A: Appl. Sci. Manufact., 115, 31-45. https://doi.org/10.1016/j.compositesa.2018.09.005.
  27. Hongyong, J., Yiru, R., Binhua, G., Jinwu, X. and Fu-Gwo, Y., (2017), "Design of novel plug-type triggers for composite square tubes: enhancement of energy-absorption capacity and inducing failure mechanisms", Int. J. Mach. Sci., 113-136, 636-651. https://doi.org/10.1016/j.ijmecsci.2017.06.050.
  28. Hufenbach, W., Gude, M., Bohm, R.and Zscheyge, M. (2011), "The effect of temperature on mechanical properties and failure behaviour of hybrid yarn textile-reinforced thermoplastics". Mater. Design, 32, 4278-4288. https://doi.org/10.1016/j.matdes.2011.04.017.
  29. Kharazan, M., Sadr, M. and Kiani, M. (2014), "Delamination growth analysis in composite laminates subjected to low velocity impact", Steel Compos. Struct., 17(4), 387-403. https://doi.org/10.12989/scs.2014.17.4.387.
  30. Li, X., Nia, A., Ma, X., Yahya, M. and Wang, Z. (2017), "Dynamic response of kevlar 29/epoxy laminates under projectile impact-experimental investigation", Mech. Adv. Mater. Struct., 24, 114-121. https://doi.org/10.1080/15376494.2015.1107670.
  31. Liu, P., Zhu, D., Wang, J. and Bui, T. (2017), "Structure, mechanical behavior and puncture resistance of grass carp scales". J. Bionic Eng., 14, 356-368. https://doi.org/10.1016/S1672-6529(16)60404-3.
  32. Lopes, C., Camanho, P., Gurdal, Z., Miami, P. and Gonzalez, E. (2009), "Low-velocity impact damage on dispersed stacking sequence laminates. part ii: Numerical simulations", Compos. Sci. Technol., 69, 937-947. https://doi.org/10.1016/j.compscitech.2009.02.015.
  33. Mamivand, M. and Liaghat, G. (2010), "A model for ballistic impact on multi-layer fabric targets", Int. J. Impact Eng., 37, 806-812. https://doi.org/10.1016/j.ijimpeng.2010.01.003.
  34. Martinez-Hergueta, F., Ridruejo, A., Gonzalez, C. and Llorca, J. (2015), "Deformation and energy dissipation mechanisms of needle-punched nonwoven fabrics: a multiscale experimental analysis", Int. J. Solid. Struct., 64-65, 120-131. https://doi.org/10.1016/j.ijsolstr.2015.03.018.
  35. Miami, P., Camanho, P., Mayugo, J. and Davila, C. (2007), "A continuum damage model for composite laminates: Part i-constitutive model", Mech. Mater., 39, 897-908. https://doi.org/10.1016/j.mechmat.2007.03.005.
  36. Moyre, S., Hine, P., Duckett, R., Carr, D. and Ward, I. (2000), "Modelling of the energy absorption by polymer composites upon ballistic impact", Compos. Sci. Technol., 60, 2631-2642. https://doi.org/10.1016/S0266-3538(00)00139-1.
  37. Naik, N. and Doshi, A. (2005), "Ballistic impact behaviour of thick composites: analytical formulation", AIAA J., 43, 1525-1536. https://doi.org/10.2514/1.11993.
  38. Naik, N. and Shrirao, P. (2004), "Composite structures under ballistic impact", Compos. Struct., 66, 579-590. https://doi.org/10.1016/j.compstruct.2004.05.006.
  39. Naik, N., Shrirao, P. and Reddy, C. (2006), "Ballistic impact behaviour of woven fabric composites: formulation", Int. J. Impact Eng., 32, 1521-1552. https://doi.org/10.1016/j.ijimpeng.2005.01.004.
  40. Navarro, C. (1998), "Simplified modelling of the ballistic behaviour of fabric and fibre-reinforced polymer matrix composites", Key Eng. Mater., 141-143, 383-400. https://doi.org/10.4028/www.scientific.net/KEM.141-143.383
  41. Nguyen, T., Waldmann, D. and Bui, T. (2019), "role of interfacial transition zone in phase field modeling of fracture in layered heterogeneous structures", J. Comput. Phys., 386, 585-610. https://doi.org/10.1016/j.jcp.2019.02.022.
  42. Ou, Y., Zhu, D., Zhang, H., Huang, L., Yao, Y., Li, G. and Mobasher, B. (2016), "Mechanical characterization of the tensile properties of glass fiber and its reinforced polymer (gfrp) composite under varying strain rates and temperatures", Polymers 8, https://doi.org/10.3390/polym8050196.
  43. Pandya, K., Shaktivesh, H., Dowtham, H., Inani, A. and Naik, N. (2015), "Shear plugging and frictional behaviour of composites and fabrics under quasi-static loading", Strain 51, 419-426. https://doi.org/10.1111/str.12153.
  44. Pekbey, Y., Aslantas, K. and Yumak, N. (2017), "Ballistic impact response of kevlar composites with filled epoxy matrix", Steel Compos. Struct., 24, 191-200. https://doi.org/10.12989/scs.2017.24.2.191.
  45. Potti, S. and Sun, C. (1997), "Prediction of impact induce penetration and delamination in thick composite laminates", Int. J. Impact Eng., 19, 31-48. https://doi.org/10.1016/S0734-743X(96)00005-X.
  46. Rodriguez-Millan, M., Garcia-Gonzalez, D., Rusinek, A., Abed, F. and Arias, A. (2018), "Perforation mechanics of 2024 aluminium protective plates subjected to impact by different nose shapes of projectiles", Thin-Wall. Struct., 123, 1-10. https://doi.org/10.1016/j.tws.2017.11.004.
  47. Saberi, H., Bui, T., Furukawa, A., Rahai, A. and Hirose, S. (2020), "frp-confined concrete model based on damage-plasticity and phase-field approaches", Compos. Struct., 240, https://doi.org/10.1016/j.compstruct.2020.112263.
  48. Scazzosi, R., Manes, A. and Giglio, M. (2019), "Analytical model of high-velocity impact of a deformable projectile against textilebased composites", J. Mater. Eng. Perform., 28. https://doi.org/10.1007/s11665-019-04026-x.
  49. Shaoquan, W., Shangli, D., Yu, G. and Yungang, S. (2017), "Thermal ageing effects on mechanical properties and barely visible impact damage behavior of a carbon fiber reinforced bismaleimide composite", Mater. Design, 115, 213-223. https://doi.org/10.1016/j.matdes.2016.11.062.
  50. Sikarwar, R. and Velmurugan, R. (2019), "Impact damage assessment of carbon fiber reinforced composite with different stacking sequence", J. Compos. Mater., https://doi.org/10.1177/0021998319859934.
  51. Smith, J., F.L., M. and Schiefer, H. (1958), "Stress-strain relationships in yarns subjected to rapid impact loading:5. wave propagation in long textile yarns impacted transversally", J. Res. National Bureau of Standars, 60, 517-534. https://doi.org/10.6028/jres.060.052
  52. Tarfaoui, M., Choukri, S. and Neme, A. (2008), "Effect of fibre orientation on mechanical properties of the laminated polymer composites subjected to out-of-plane high strain rate compressive loadings", Compos. Sci. Technol., 68, 477-485. https://doi.org/10.1016/j.compscitech.2007.06.014.
  53. Turon, A., D'avila, C., Camaho, P. and Coste, J. (2007), "An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models", Eng. Fract. Mech., 74, 1665-1682. https://doi.org/10.1016/j.engfracmech.2006.08.025.
  54. Wen, H. (2000), "Predicting the penetration and perforation of frp laminates struck normally by projectiles with different nose shapes", Compos. Struct., 49, 321-329. https://doi.org/10.1016/S0263-8223(00)00064-7.
  55. Wen, H. (2001), "Penetration and perforation of thick frp laminates", Compos. Sci. Technol., 51, 1163-1172. https://doi.org/10.1016/S0266-3538(01)00020-3.
  56. Xiao, J., Gama, B. and Gillespie Jr, J. (2007), "Progressive damage and delamination in plain weave s-2 glass/sc-15 composites under quasi-static punch-shear loading", Compos. Struct., 78, 182-196. https://doi.org/10.1016/j.compstruct.2005.09.001.
  57. Yiru Ren, H., Zhang, S., Liu, Z. and Nie, L. (2018), "Multiscale finite element analysis for tension and ballistic penetration damage characterizations of 2d triaxially braided composite", J. Mater. Sci., 53, 10071-10094. https://doi.org/10.1007/s10853-018-2248-x.
  58. Zhang, X., Liu, T., He, N. and Jia, G. (2016), "Investigation of two finite element modelling approaches for ballistic impact response of composite laminates", Int. J. Crashrothiness, 22, 377-393. https://doi.org/10.1080/13588265.2016.1270495.
  59. Zhu, G., Goldsmith, W. and Dharan, C. (1992), "Penetration of laminated kevlar by projectiles ii. analytical model", Int. J. Solid. Struct., 29, 421-436. https://doi.org/10.1016/0020-7683(92)90208-B.
  60. Zhu, G., Sun, G., Yu, H., Li, S. and Li, Q. (2018), "Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading", Int. J. Mech. Sci., 135, 458-483. https://doi.org/10.1016/j.ijmecsci.2017.11.017.