DOI QR코드

DOI QR Code

Static analysis of cutout microstructures incorporating the microstructure and surface effects

  • Alazwari, Mashhour A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Abdelrahman, Alaa A. (Mechanical Design & Production Dept., Faculty of Engineering, Zagazig University) ;
  • Wagih, Ahmed (Mechanical Design & Production Dept., Faculty of Engineering, Zagazig University) ;
  • Eltaher, Mohamed A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Abd-El-Mottaleb, Hanaa E. (Structural Engineering Department, Faculty of Engineering, Zagazig University)
  • Received : 2020.06.21
  • Accepted : 2021.02.15
  • Published : 2021.03.10

Abstract

This article develops a nonclassical model to analyze bending response of squared perforated microbeams considering the coupled effect of microstructure and surface stress under different loading and boundary conditions, those are not be studied before. The corresponding material and geometrical characteristics of regularly squared perforated beams relative to fully filled beam are obtained analytically. The modified couple stress and the modified Gurtin-Murdoch surface elasticity models are adopted to incorporate the microstructure as well as the surface energy effects. The differential equations of equilibrium including the Poisson's effect are derived based on minimum potential energy. Exact closed form solution is obtained for bending behavior of the proposed model considering the classical and nonclassical boundary conditions for both uniformly distributed and concentrated loads. The proposed model is verified with results available in the literature. Influences of the microstructure length scale parameter, surface energy, beam thickness, boundary and loading conditions on the bending behavior of perforated microbeams are investigated. It is observed that microstructure and surface parameters are vital in investigation of the bending behavior of perforated microbeams. The obtained results are supportive for the design, analysis and manufacturing of perforated nanobeams that commonly used in nanoactuators, nanoswitches, MEMS and NEMS systems.

Keywords

References

  1. Abdelrahman, A.A. and Eltaher, M.A. (2020), "On Bending and Buckling Responses of Perforated Nanobeams including Surface Energy for Different Beams Theories", Eng. with Comput., https://doi.org/10.1007/s00366-020-01211-8.
  2. Abo-bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020a), "Weight Optimization of Axially Functionally Graded Microbeams under Buckling and Vibration Behaviors", Mech. Based Des. Struct. Machines, https://doi.org/10.1080/15397734.2020.1838298.
  3. Abo-Bakr, R.M., Eltaher, M.A. and Attia, M.A. (2020b), "Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects", Eng. with Comput., 1-22. https://doi.org/10.1007/s00366-020-01146-0.
  4. Agwa, M.A. and Eltaher, M.A. (2016), "Vibration of a carbyne nanomechanical mass sensor with surface effect", Appl. Phys. A, 122(4), 335. https://doi.org/10.1007/s00339-016-9934-9
  5. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
  6. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. http://dx.doi.org/10.12989/sem.2016.59.3.579.
  7. Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stab. Dynam., 17(03), 1750033. https://doi.org/10.1142/S021945541750033X.
  8. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
  9. Akbas, S.D. (2018a), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219. http://dx.doi.org/10.12989/anr.2018.6.3.219.
  10. Akbas, S.D. (2018b), "Forced vibration analysis of cracked nanobeams", J. Braz. Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1.
  11. Akbas, S.D. (2018c), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39. http://dx.doi.org/10.12989/anr.2018.6.1.039.
  12. Akbas, S.D. (2019a), "Axially Forced Vibration Analysis of Cracked a Nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392.
  13. Akbas, S.D. (2019b), "Axially Forced Vibration Analysis of Cracked a Nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392.
  14. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277. https://doi.org/10.12989/anr.2020.8.4.277.
  15. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020a), "Influence of the perforation configuration on dynamic behaviors of multilayered beam structure", Structures, 28, 1413-1426. https://doi.org/10.1016/j.istruc.2020.09.055.
  16. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020b), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555.
  17. Ansari, R. and Sahmani, S. (2011), "Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories", Int. J. Eng. Sci., 49(11), 1244-1255. https://doi.org/10.1016/j.ijengsci.2011.01.007.
  18. Arefi, M. and Arani, A.H. (2018), "Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments", Mech. Based Des. Struct. Machines, 46(6), 669-692. https://doi.org/10.1080/15397734.2018.1434002.
  19. Arefi, M., Mohammad-Rezaei Bidgoli, E. and Civalek, O. (2020), "Bending response of FG composite doubly curved nanoshells with thickness stretching via higher-order sinusoidal shear theory", Mech. Based Des. Struct. Machines, 1-29. https://doi.org/10.1080/15397734.2020.1777157.
  20. Asrari, R., Ebrahimi, F., Kheirikhah, M.M. and Safari, K.H. (2020), "Buckling analysis of heterogeneous magneto-electro-thermo-elastic cylindrical nanoshells based on nonlocal strain gradient elasticity theory", Mech. Based Des. Struct. Machines, 1-24. https://doi.org/10.1080/15397734.2020.1728545.
  21. Babaei, H. and Eslami, M.R. (2020), "Nonlinear bending analysis of size-dependent FG porous microtubes in thermal environment based on modified couple stress theory", Mech. Based Des. Struct. Machines, 1-22. https://doi.org/10.1080/15397734.2020.1784202.
  22. Civalek, O. (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Method. Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254.
  23. Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mechanica, 231, 2565-2587. https://doi.org/10.1007/s00707-020-02653-3.
  24. Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2020a), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
  25. Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020b), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.
  26. Daw, M.S. and Baskes, M.I. (1984), "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals", Physical Review B, 29(12), 6443. https://doi.org/10.1103/PhysRevB.29.6443.
  27. Demir, C., Mercan, K., Numanoglu, H.M. and Civalek, O. (2018), "Bending response of nanobeams resting on elastic foundation", J. Appl. Comput. Mech., 4(2), 105-114. https://doi.org/10.22055/JACM.2017.22594.1137.
  28. Eltaher, M., Abdraboh, A. and Almitani, K. (2018), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24(9): 3925-3937. https://doi.org/10.1007/s00542-018-3910-6.
  29. Eltaher, M., Hamed, M., Sadoun, A. and Mansour, A. (2014), "Mechanical analysis of higher order gradient nanobeams", Appl. Math. Comput., 229, 260-272. https://doi.org/10.1016/j.amc.2013.12.076.
  30. Eltaher, M., Kabeel, A., Almitani, K. and Abdraboh, A. (2018), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technol., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3.
  31. Eltaher, M., Mahmoud, F., Assie, A. and Meletis, E. (2013), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Math. Comput., 224, 760-774. https://doi.org/10.1016/j.amc.2013.09.002
  32. Eltaher, M.A., Mohamed, N. and Mohamed, S.A. (2020), "Nonlinear buckling and free vibration of curved CNTs by doublet mechanics", Smart Struct. Syst., 26(2), 213-226. http://dx.doi.org/10.12989/sss.2020.26.2.213.
  33. Eltaher, M.A. and Mohamed, N. A. (2020), "Vibration of nonlocal perforated nanobeams with general boundary conditions", Smart Struct. Syst., 25(4), 501-514. http://dx.doi.org/10.12989/sss.2020.25.4.501.
  34. Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A. E. (2020), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., 25(2), 219-228. http://dx.doi.org/10.12989/sss.2020.25.2.219.
  35. Esen, I, Abdelrahman, A.A. and Eltaher, M.A., (2020), "Dynamics Analysis of Timoshenko Perforated Microbeams under Moving Loads", Eng. with Comput., https://doi.org/10.1007/s00366-020-01212-7.
  36. Esen, I., Ozarpa, C. and Eltaher, M.A. (2021), "Free Vibration of a Cracked FG Microbeam Embedded in an Elastic Matrix and Exposed to Magnetic Field in a Thermal Environment", Compos. Struct., 113552. https://doi.org/10.1016/j.compstruct.2021.113552.
  37. Fanget, S., Hentz, S., Puget, P., Arcamone, J., Matheron, M., Colinet, E. and Roukes, M. (2011), "Gas sensors based on gravimetric detection-A review", Sensor. Actuat. B Chem., 160(1), 804-821. https://doi.org/10.1016/j.snb.2011.08.066.
  38. Gao, X.L. (2015), "A new Timoshenko beam model incorporating microstructure and surface energy effects", Acta Mechanica, 226(2) ,457-474. https://doi.org/10.1007/s00707-014-1189-y.
  39. Gao, X.L. and Mahmoud, F.F. (2014), "A new Bernoulli-Euler beam model incorporating microstructure and surface energy effects", Zeitschrift fur angewandte Mathematik und Physik, 65(2) ,393-404. https://doi.org/10.1007/s00033-013-0343-z.
  40. Ghanbari, B., Ghadiri, M. and SafarPour, H. (2020), "A modified strain gradient shell model for vibration analysis of DWCNT conveying viscous fluid including surface effects", Mech. Based Des. Struct. Machines, 1-31. https://doi.org/10.1080/15397734.2020.1753533.
  41. Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293.
  42. Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Archiv. Rational Mech. Anal., 57(4), 291-323. https://doi.org/10.1007/BF00261375
  43. Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solid. Struct., 14(6), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
  44. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. http://dx.doi.org/10.12989/sem.2019.71.1.089.
  45. Hamed, M.A., Mohamed, N.A. and Eltaher, M.A. (2020), "Stability buckling and bending of nanobeams including cutouts", Eng. with Comput., https://doi.org/10.1007/s00366-020-01063-2.
  46. Hashemi, M. and Asghari, M. (2017), "On the size-dependent flexural vibration characteristics of unbalanced couple stress-based micro-spinning beams", Mech. Based Des. Struct. Machines, 45(1), 1-11. http://dx.doi.org/10.1080/15397734.2015.1125298.
  47. Hashemi Kachapi, S.H. (2020), "Surface/interface approach in pull-in instability and nonlinear vibration analysis of fluid-conveying piezoelectric nanosensor", Mech. Based Des. Struct. Machines, 1-26. https://doi.org/10.1080/15397734.2020.1725566
  48. Heidari, A., Yoon, Y.J., Park, M.K., Park, W.T. and Tsai, J.M.L. (2012), "High sensitive dielectric filled Lame mode mass sensor", Sensor. Actuat. A, Phys., 188, 82-88. https://doi.org/10.1016/j.sna.2012.03.040
  49. Hozhabrossadati, S.M., Challamel, N., Rezaiee-Pajand, M. and Sani, A.A. (2020), "Free vibration of a nanogrid based on Eringen's stress gradient model", Mech. Based Des. Struct. Machines, 1-19. https://doi.org/10.1080/15397734.2020.1720720.
  50. Hussein, M.I., Leamy, M.J. and Ruzzene, M. (2014), "Dynamics of phononic materials and structures, Historical origins, recent progress, and future outlook", Appl. Mech. Rev., 66(4).
  51. Jena, S.K., Chakraverty, S., Malikan, M. and Tornabene, F. (2019), "Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory", Mech. Based Des. Struct. Machines, 1-15. https://doi.org/10.1080/15397734.2019.1698437
  52. Jena, S.K., Chakraverty, S., Malikan, M. and Tornabene, F. (2020), "Effects of surface energy and surface residual stresses on vibro-thermal analysis of chiral, zigzag, and armchair types of SWCNTs using refined beam theory", Mech. Based Des. Struct. Machines, 1-15. https://doi.org/10.1080/15397734.2020.1754239
  53. Jeong, K.H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1-2), 404-419. https://doi.org/10.1016/j.jsv.2006.05.029.
  54. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
  55. Kerid, R., Bourouina, H., Yahiaoui, R., Bounekhla, M. and Aissat, A. (2019), "Magnetic field effect on nonlocal resonance frequencies of structure-based filter with periodic square holes network", Physica E, Low-dimensional Syst. Nanostruct., 105, 83-89. https://doi.org/10.1016/j.physe.2018.05.021.
  56. Lata P. and Kaur. H, (2021), "Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature", Steel Compos. Struct., 38(2), 213-221. http://dx.doi.org/10.12989/scs.2021.38.2.213
  57. Lenci, S., Pieri, F., Haspeslagh, L., De Coster, J., Decoutere, S., Caro, A.M. and Witvrouw, A. (2011), "Stiction-free poly-SiGe resonators for monolithic integration of biosensors with CMOS", Paper presented at the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.
  58. Li, C. (2017), "Nonlocal thermo-electro-mechanical coupling vibrations of axially moving piezoelectric nanobeams", Mech. Based Des. Struct. Machines, 45(4), 463-478. https://doi.org/10.1080/15397734.2016.1242079.
  59. Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021.
  60. Liu, C. and Rajapakse, R.K.N.D. (2009), "Continuum models incorporating surface energy for static and dynamic response of nanoscale beams", IEEE T. Nanotechnol., 9(4), 422-431. https://doi.org/10.1109/TNANO.2009.2034142.
  61. Luschi, L. and Pieri, F. (2012), "A simple analytical model for the resonance frequency of perforated beams", Procedia Eng., 47, 1093-1096. https://doi.org/10.1016/j.proeng.2012.09.341.
  62. Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004.
  63. Luschi, L. and Pieri, F. (2015), "Design of MEMS mass sensors based of flexural phononic crystals", Paper presented at the 2015 XVIII AISEM Annual Conference.
  64. Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensor. Actuat. B, Chem., 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085.
  65. Mahmoud, F., Eltaher, M., Alshorbagy, A. and Meletis, E. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Technol., 26(11), 3555-3563. https://doi.org/10.1007/s12206-012-0871-z.
  66. Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11(3), 139. https://doi.org/10.1088/0957-4484/11/3/301.
  67. Mohammadi, S., Eftekhar, A.A., Hunt, W.D. and Adibi, A. (2009), "High-Q micromechanical resonators in a two-dimensional phononic crystal slab", Appl. Phys. Lett., 94(5), 051906. https://doi.org/10.1063/1.3078284.
  68. Najafzadeh, M., Adeli, M.M., Zarezadeh, E. and Hadi, A. (2020), "Torsional vibration of the porous nanotube with an arbitrary cross-section based on couple stress theory under magnetic field", Mech. Based Des. Struct. Machines, 1-15. https://doi.org/10.1080/15397734.2020.1733602.
  69. Ng, E.J., Yang, Y., Chen, Y. and Kenny, T.W. (2014), "An etch hole-free process for temperature-compensated high Q encapsulated resonators", Paper presented at the Proc. Solid-State Sens., Actuators, Microsyst. Workshop.
  70. Nguyen, C.T.C. (2007), "MEMS technology for timing and frequency control. IEEE transactions on ultrasonics", Ferroelec. Frequency Control, 54(2), 251-270. https://doi.org/10.1109/TUFFC.2007.240
  71. Oseev, A., Zubtsov, M. and Lucklum, R. (2013), "Gasoline properties determination with phononic crystal cavity sensor", Sensor. Actuat. B Chem., 189, 208-212. https://doi.org/10.1016/j.snb.2013.03.072
  72. Park, K.K., Lee, H., Kupnik, M., Oralkan, O., Ramseyer, J.P., Lang, H.P. and Khuri-Yakub, B.T. (2011), "Capacitive micromachined ultrasonic transducer (CMUT) as a chemical sensor for DMMP detection", Sensor. Actuat. B Chem., 160(1), 1120-1127. https://doi.org/10.1016/j.snb.2011.09.036
  73. Rottenberg, X., Jansen, R., Cherman, V., Witvrouw, A., Tilmans, H., Zanaty, M. and Abbas, M. (2013), "Meta-materials approach to sensitivity enhancement of MEMS BAW resonant sensors", Paper presented at the SENSORS, 2013 IEEE.
  74. Safarpour, M., Rahimi, A.R. and Alibeigloo, A. (2020), "Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM", Mech. Based Des. Struct. Machines, 48(4), 496-524. https://doi.org/10.1080/15397734.2019.1646137.
  75. Shokravi, M. (2018), "Forced vibration response in nanocomposite cylindrical shells-Based on strain gradient beam theory", Steel Compos. Struct., 28(3), 381-388. https://doi.org/10.12989/scs.2018.28.3.381.
  76. Shenoy, V. B. (2005), "Atomistic calculations of elastic properties of metallic FCC crystal surfaces", Phys. Review B, 71(9), 094104. https://doi.org/10.1103/PhysRevB.74.149901.
  77. Sivakumar, N., Kanagasabapathy, H. and Srikanth, H. (2018), "Analysis of Perforated Piezoelectric Sandwich Smart Structure Cantilever Beam Using COMSOL", Materials Today, Proceedings, 5(5), 12025-12034. https://doi.org/10.1016/j.matpr.2018.02.177
  78. Sun, F., Wang, P., Li, W., Fan, H. and Fang, D. (2017), "Effects of circular cutouts on mechanical behaviors of carbon fiber reinforced lattice-core sandwich cylinder", Compos. Part A, Appl. Sci. Manufact., 100, 313-323. https://doi.org/10.1016/j.compositesa.2017.05.029
  79. Van Beek, J. and Puers, R. (2011), "A review of MEMS oscillators for frequency reference and timing applications", J. Micromech. Microeng., 22(1), 013001. https://doi.org/10.1088/0960-1317/22/1/013001.
  80. Wang, S., Popa, L.C. and Weinstein, D. (2014), "GaN MEMS resonator using a folded phononic crystal structure", Paper presented at the Proc. Solid-State Sens., Actuators, Microsyst. Workshop (Hilton Head)
  81. Xiao, Y., Wen, J. and Wen, X. (2012), "Broadband locally resonant beams containing multiple periodic arrays of attached resonators", Phys. Lett. A, 376(16), 1384-1390. https://doi.org/10.1016/j.physleta.2012.02.059.
  82. Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002). "Couple stress-based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  83. Yuan, Y. and Xu, K. (2019), "Postbuckling analysis of axially loaded nanoscaled shells embedded in elastic foundations based on Ru's surface elasticity theory", Mech. Based Des. Struct. Machines, 1-21. https://doi.org/10.1080/15397734.2019.1665543.
  84. Yuksel, S.B. (2019), "Experimental investigation of retrofitted shear walls reinforced with welded wire mesh fabric", Struct. Eng. Mech., 70(2), 133-141. https://doi.org/10.12989/sem.2019.70.2.133.
  85. Zhou, D.Y., Liu, L.F. and Zhu, L.M. (2016), "Lateral load-carrying capacity analyses of composite shear walls with double steel plates and filled concrete with binding bars", J. Cent. South Univ., 23(8), 2083-2091. https://doi.org/10.1007/s11771-016-3264-0.

Cited by

  1. An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.307