참고문헌
- Aghadavoudi, F., Golestanian, H. and Beni, Y.T. (2016), "Investigation of cnt defects on mechanical behavior of cross linked epoxy based nanocomposites by molecular dynamics", Int. J. Adv. Des. Manuf. Technol., 9(1), 137-146.
- Ajori, S., Parsapour, H., Ansari, R. and Ameri, A. (2019), "Buckling behavior of various metallic glass nanocomposites reinforced by carbon nanotube and Cu nanowire: a molecular dynamics simulation study", Mater. Res. Express, 6(9), 095070. https://doi.org/10.1088/2053-1591/ab2cfd.
- Alig, I., Skipa, T., Lellinger, D. and Potschke, P. (2008), "Destruction and formation of a carbon nanotube network in polymer melts: Rheology and conductivity spectroscopy", Polymer, 49(16), 3524-3532. https://doi.org/10.1016/j.polymer.2008.05.037.
- Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., 25(2), 141-155. https://doi.org/10.12989/scs.2017.25.2.141.
- Aminipour, H., Janghorban, M. and Li, L. (2020), "Wave dispersion in nonlocal anisotropic macro/nanoplates made of functionally graded materials", Waves in Random and Complex Media, 1-45. https://doi.org/10.1080/17455030.2020.1713422.
- Ansari, R., Hassanzadeh-Aghdam, M.K. and Mahmoodi, M.J. (2016), "Three-dimensional micromechanical analysis of the CNT waviness influence on the mechanical properties of polymer nanocomposites", Acta Mechanica, 227(12), 3475-3495. https://doi.org/10.1007/s00707-016-1666-6.
- Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479.
- Arefi, M. and Zenkour, A.M. (2018), "Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory", Steel Compos. Struct., 26(4), 421-437. https://doi.org/10.12989/scs.2018.26.4.421.
- Arefi, M., Pourjamshidian, M. and Arani, A.G. (2019), "Dynamic instability region analysis of sandwich piezoelectric nano-beam with FG-CNTRCs face-sheets based on various high-order shear deformation and nonlocal strain gradient theory", Steel Compos. Struct., 32(2), 157-171. https://doi.org/10.12989/scs.2019.32.2.157.
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227.
- Dabbagh, A., Rastgoo, A. and Ebrahimi, F. (2020), "Static stability analysis of agglomerated multi-scale hybrid nanocomposites via a refined theory", Eng. with Comput., 1-20. https://doi.org/10.1007/s00366-020-00939-7.
- Ebrahimi, F. and Dabbagh, A. (2019), "An analytical solution for static stability of multi-scale hybrid nanocomposite plates", Eng. with Comput., 1-15. https://doi.org/10.1007/s00366-019-00840-y.
- Fattahi, A.M., Safaei, B. and Moaddab, E. (2019), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281.
- Frankland, S.J.V., Harik, V.M., Odegard, G.M., Brenner, D.W. and Gates, T.S. (2003), "The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation", Compos. Sci. Technol.y, 63(11), 1655-1661. https://doi.org/10.1016/S0266-3538(03)00059-9.
- Gao, Y., Xiao, W.S. and Zhu, H. (2019), "Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory", Steel Compos. Struct., 31(5), 469-488. https://doi.org/10.12989/scs.2019.31.5.469.
- Ghayesh, M.H. (2009), "Stability characteristics of an axially accelerating string supported by an elastic foundation", Mechanism and Machine Theory, 44(10), 1964-1979. https://doi.org/10.1016/j.mechmachtheory.2009.05.004.
- Ghayesh, M.H. (2012), "Coupled longitudinal-transverse dynamics of an axially accelerating beam", J. Sound Vib., 331(23), 5107-5124. https://doi.org/10.1016/j.jsv.2012.06.018.
- Ghayesh, M.H. (2012), "Stability and bifurcations of an axially moving beam with an intermediate spring support", Nonlinear Dynam., 69(1), 193-210. https://doi.org/10.1007/s11071-011-0257-2.
- Ghayesh, M.H. (2012), "Subharmonic dynamics of an axially accelerating beam", Arch. Appl. Mech., 82(9), 1169-1181. https://doi.org/10.1007/s00419-012-0609-5.
- Ghayesh, M.H. (2018), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004.
- Ghayesh, M.H. (2019), "Mechanics of viscoelastic functionally graded microcantilevers", Eur. J. Mech.-A/Solids, 73, 492-499. https://doi.org/10.1016/j.euromechsol.2018.09.001.
- Ghayesh, M.H. (2019), "Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams", Compos. Struct., 225, 110974. https://doi.org/10.1016/j.compstruct.2019.110974.
- Ghayesh, M.H., Yourdkhani, M., Balar, S. and Reid, T. (2010), "Vibrations and stability of axially traveling laminated beams", Appl. Math. Comput., 217(2), 545-556. https://doi.org/10.1016/j.amc.2010.05.088.
- Grover, N., Maiti, D.K. and Singh, B.N. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos, Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012.
- Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
- Islam, M.Z., Mahboob, M. and Lowe, R.L. (2016), "Mechanical properties of defective carbon nanotube/polyethylene nanocomposites: A molecular dynamics simulation study", Polymer Compos., 37(1), 305-314. https://doi.org/10.1002/pc.23182.
- Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
- Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82, 499-512. https://doi.org/10.1016/j.ast.2018.10.001.
- Kumar, A., Sharma, K., Singh, P.K. and Dwivedi, V.K. (2017), "Mechanical characterization of vacancy defective single-walled carbon nanotube/epoxy composites", Mater Today Proc, 4, 4013-4021. https://doi.org/10.1016/j.matpr.2017.02.303.
- Kuzumaki, T., Ujiie, O., Ichinose, H. and Ito, K. (2000), "Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite", Adv. Eng. Mater., 2(7), 416418.https://doi.org/10.1002/15272648(200007)2:7<416::AID-ADEM416>3.0.CO;2-Y
- Lata, P. and Singh, S. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load", Steel Compos. Struct., 33(1), 123-131. https://doi.org/10.12989/scs.2019.33.1.123.
- Liu, Z.J., Yuan, Z.Y., Zhou, W., Peng, L.M. and Xu, Z. (2001), "Co/carbon-nanotube monometallic system: the effects of oxidation by nitric acid", Phys. Chemistry Chem. Phys., 3(12), 2518-2521. https://doi.org/10.1039/b101950n
- Martone, A., Faiella, G., Antonucci, V., Giordano, M. and Zarrelli, M. (2011), "The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix", Compos. Sci. Technol., 71(8), 1117-1123. https://doi.org/10.1016/j.compscitech.2011.04.002.
- Mirzaalian, M., Aghadavoudi, F. and Moradi-Dastjerdi, R. (2019), "Bending Behavior of Sandwich Plates with Aggregated CNT-Reinforced Face Sheets", J. Solid Mech., 11(1), 26-38. https://doi.org/10.22034/JSM.2019.664214.
- Mirzavand, B. and Eslami, M.R. (2011), "A closed-form solution for thermal buckling of piezoelectric FGM rectangular plates with temperature-dependent properties", Acta mechanica, 218(1-2), 87-101. https://doi.org/10.1007/s00707-010-0402-x.
- Mohammadimehr, M., Mehrabi, M., Hadizadeh, H. and Hadizadeh, H. (2018), "Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermomagnetic fields based on strain gradient theory", Steel Compos. Struct., 26(4), 513-531. http://dx.doi.org/10.12989/scs.2018.26.4.513.
- Moradi Dastjerdi, R., Payganeh, G., Rajabizadeh Mirakabad, S. and Jafari Mofrad-Taheri, M. (2016), "Static and free vibration analyses of functionally graded nano-composite plates reinforced by wavy carbon nanotubes resting on a Pasternak elastic foundation", Mech. Adv. Compos. Struct., 3(2), 123-135. https://doi.org/10.22075/MACS.2016.474.
- Moradi-Dastjerdi, R. and Aghadavoudi, F. (2018), "Static analysis of functionally graded nanocomposite sandwich plates reinforced by defected CNT", Compos. Struct., 200, 839-848. https://doi.org/10.1016/j.compstruct.2018.05.122.
- Moradi-Dastjerdi, R. and Malek-Mohammadi, H. (2017), "Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory", J. Sandw. Struct. Mater., 19(6), 736-769. https://doi.org/10.1177/1099636216643425.
- Nami, M.R., Janghorban, M. and Damadam, M. (2015), "Thermal buckling analysis of functionally graded rectangular nanoplates based on nonlocal third-order shear deformation theory", Aerosp. Sci. Technol., 41, 7-15. https://doi.org/10.1016/j.ast.2014.12.001.
- Nami, M.R. and Janghorban, M. (2015), "Free vibration analysis of rectangular nanoplates based on two-variable refined plate theory using a new strain gradient elasticity theory", J. Braz. Soc. Mech. Sci. Eng., 37(1), 313-324. https://doi.org/10.1007/s40430-014-0169-4.
- Nguyen, N.T., Kim, N.I. and Lee, J. (2014), "Analytical solutions for bending of transversely or axially FG nonlocal beams", Steel Compos. Struct., 17(5), 641-665. https://doi.org/10.12989/scs.2014.17.5.641.
- Peng, X. and Meguid, S.A. (2017), "Molecular dynamics simulations of the buckling behavior of defective carbon nanotubes embedded in epoxy nanocomposites", Eur. Polymer J., 93, 246-258. https://doi.org/10.1016/j.eurpolymj.2017.06.010.
- Prylutskyy, Y.I., Durov, S.S., Ogloblya, O.V., Buzaneva, E.V. and Scharff, P. (2000), "Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes", Comput. Mater. Sci., 17(2-4), 352-355. https://doi.org/10.1016/S0927-0256(00)00051-3.
- Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350. http://dx.doi.org/10.12989/scs.2017.23.3.339.
- Shahsavari, D. and Janghorban, M. (2017), "Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load", J. Braz. Soc. Mech. Sci. Eng., 39(10), 3849-3861. https://doi.org/10.1007/s40430-017-0863-0.
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
- Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", J. Eng. Mater. Technol., 126(3), 250-257. https://doi.org/10.1115/1.1751182.
- Shokravi, M. (2018), "Forced vibration response in nanocomposite cylindrical shells-Based on strain gradient beam theory", Steel Compos. Struct., 28(3), 381-388. https://doi.org/10.12989/scs.2018.28.3.381.
- Shokrieh, M.M. and Rafiee, R. (2010), "Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites", Compos. Struct., 92(10), 2415-2420. https://doi.org/10.1016/j.compstruct.2010.02.018.
- Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
- Soleimani, A., Dastani, K., Hadi, A. and Naei, M.H. (2019), "Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory", Steel Compos. Struct., 30(6), 517-534. http://dx.doi.org/10.12989/scs.2019.30.6.517.
- Tahouneh, V., Naei, M.H. and Mashhadi, M.M. (2019), "Using IGA and trimming approaches for vibrational analysis of Lshape graphene sheets via nonlocal elasticity theory", Steel Compos. Struct., 33(5), 717-727. http://dx.doi.org/10.12989/scs.2019.33.5.717.
- Wu, C.P. and Chen, Y.J. (2020), "A nonlocal continuum mechanics-based asymptotic theory for the buckling analysis of SWCNTs embedded in an elastic medium subjected to combined hydrostatic pressure and axial compression", Mech. Mater., 103514. https://doi.org/10.1016/j.mechmat.2020.103514.
- Xu, S., Liu, J. and Li, Q. (2015), "Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste", Constr. Build. Mater., 76, 16-23. https://doi.org/10.1016/j.conbuildmat.2014.11.049.
- Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struc., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
- Zhang, Y., Johnston, A., Yousefpour, A., Guan, J., Simard, B. and Kingston, C. (2020), "A Three Dimensional Unit Cell Model for the Analysis of Thermal Residual Stresses in Polymer Composites Reinforced with Wavy Carbon Nanotubes", MRS Adv., 5(33-34), 1739-1748. https://doi.org/10.1557/adv.2019.440.
- Zhu, R., Pan, E. and Roy, A.K. (2007), "Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites", Mater. Sci. Eng. A, 447(1-2), 51-57. https://doi.org/10.1016/j.msea.2006.10.054.
피인용 문헌
- Finite Element Modeling of Stress Behavior of FGM Nanoplates vol.2021, 2021, https://doi.org/10.1155/2021/9983024
- Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157