DOI QR코드

DOI QR Code

A study on thermo-elastic interactions in 2D porous media with-without energy dissipation

  • Alzahrani, Faris (Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Mathematics Department, King Abdulaziz University) ;
  • Abbas, Ibrahim A. (Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Mathematics Department, King Abdulaziz University)
  • Received : 2020.09.25
  • Accepted : 2021.02.14
  • Published : 2021.03.10

Abstract

The generalized thermoelastic analysis problem of a two-dimension porous medium with and without energy dissipation are obtained in the context of Green-Naghdi's (GNIII) model. The exact solutions are presented to obtain the studying fields due to the pulse heat flux that decay exponentially in the surface of porous media. By using Laplace and Fourier transform with the eigenvalues scheme, the physical quantities are analytically presented. The surface is shocked by thermal (pulse heat flux problems) and applying the traction free on its outer surfaces (mechanical boundary) through transport (diffusion) process of temperature to observe the analytical complete expression of the main physical fields. The change in volume fraction field, the variations of the displacement components, temperature and the components of stress are graphically presented. Suitable discussion and conclusions are presented.

Keywords

References

  1. Abbas, I. (2006), "Natural frequencies of a poroelastic hollow cylinder", Acta Mechanica. 186(1-4), 229-237. https://doi.org/10.1007/s00707-006-0314-y.
  2. Abbas, I.A. (2014), "Eigenvalue approach for an unbounded medium with a spherical cavity based upon two-temperature generalized thermoelastic theory", J. Mech. Sci. Technol., 28(10), 4193-4198. https://doi.org/10.1007/s12206-014-0932-6.
  3. Abbas, I.A. (2014), "Eigenvalue approach in a three-dimensional generalized thermoelastic interactions with temperature-dependent material properties", Comput. Math. Appl., 68(12), 2036-2056. https://doi.org/10.1016/j.camwa.2014.09.016.
  4. Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties", Meccanica, 49(7), 1697-1708. https://doi.org/10.1007/s11012-014-9948-3.
  5. Abbas, I.A. (2014), "Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity", J. Comput. Theor. Nanosci., 11(4), 987-992. https://doi.org/10.1166/jctn.2014.3454
  6. Abbas, I.A. and Alzahrani, F.S. (2016), "Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse", Steel Compos. Struct., 21(4), 791-803. http://dx.doi.org/10.12989/scs.2016.21.4.791.
  7. Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20(5), 1103-1117. http://dx.doi.org/10.12989/scs.2016.20.5.1103.
  8. Abbas, I.A. and Youssef, H.M. (2009), "Finite element analysis of two-temperature generalized magneto-thermoelasticity", Arch. Appl. Mech., 79(10), 917-925. https://doi.org/10.1007/s00419-008-0259-9.
  9. Abbas, I.A. and Youssef, H.M. (2013), "Two-temperature generalized thermoelasticity under ramp-type heating by finite element method", Meccanica, 48(2), 331-339. https://doi.org/10.1007/s11012-012-9604-8.
  10. Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. http://dx.doi.org/10.12989/scs.2016.22.2.369.
  11. Alzahrani, F.S. and Abbas, I.A. (2018), "Photo-thermoelastic interactions in a 2D semiconducting medium", Eur. Phys. J. Plus. 133(12), 505. https://doi.org/10.1140/epjp/i2018-12285-5.
  12. Biot, M.A. (1941), "General theory of three-dimensional consolidation", J. Appl. Phys., 12(2), 155-164. http://dx.doi.org/10.1063/1.1712886.
  13. Biot, M.A. (1956), "Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range", J.e Acoust. Soc. Am., 28(2), 179-191. https://doi.org/10.1121/1.1908241
  14. Cowin, S.C. and Nunziato, J.W. (1983), "Linear elastic materials with voids", J. Elasticity. 13(2), 125-147. https://doi.org/10.1007/BF00041230
  15. Debnath, L. and Bhatta, D. (2014), Integral transforms and their applications, Chapman and Hall/CRC
  16. Dhaliwal, R. and Singh, A. (1980), "Dynamic coupled thermoelasticity Hindustan Publ", Corp., New Delhi.
  17. Eftekhari, S.A. (2018), "A coupled ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions", Steel Compos. Struct., 28(6), 655-670. http://dx.doi.org/10.12989/scs.2018.28.6.655.
  18. Ellahi, R., Sait, S.M., Shehzad, N. and Ayaz, Z. (2019), "A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation", Int. J. Numer. Method. Heat Fluid Fl.. https://doi.org/10.1108/HFF-06-2019-0506.
  19. Ezzat, M. and El-Bary, A. (2017), "Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories", Steel Compos. Struct., 24(3), 297-307. http://dx.doi.org/10.12989/scs.2017.24.3.297.
  20. Ezzat, M.A. and El-Bary, A.A. (2017), "A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer", Steel Compos. Struct., 25(2), 177-186. http://dx.doi.org/10.12989/scs.2017.25.2.177.
  21. Green, A. and Naghdi, P. (1993), "Thermoelasticity without energy dissipation", J. Elasticity. 31(3), 189-208. https://doi.org/10.1007/BF00044969.
  22. Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012.
  23. Itu, C., Ochsner, A., Vlase, S. and Marin, M.I. (2019), "Improved rigidity of composite circular plates through radial ribs", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(8), 1585-1593. https://doi.org/10.1177/1464420718768049.
  24. Kahya, V. and Turan, M. (2018), "Vibration and buckling of laminated beams by a multi-layer finite element model", Steel Compos. Struct., 28(4), 415-426. http://dx.doi.org/10.12989/scs.2018.28.4.415.
  25. Karageorghis, A., Lesnic, D. and Marin, L. (2014), "A moving pseudo-boundary MFS for void detection in two-dimensional thermoelasticity", Int. J. Mech. Sci., 88, 276-288. https://doi.org/10.1016/j.ijmecsci.2014.05.015.
  26. Kaur, H. and Lata, P. (2020), "Effect of thermal conductivity on isotropic modified couple stress thermoelastic medium with two temperatures", Steel Compos. Struct., 34(2), 309-319. http://dx.doi.org/10.12989/scs.2020.34.2.309.
  27. Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions due to hall current in transversely isotropic thermoelastic with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
  28. Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4), 439-451. http://dx.doi.org/10.12989/scs.2018.27.4.439.
  29. Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation", Steel Compos. Struct., 32(6), 779-793. http://dx.doi.org/10.12989/scs.2019.32.6.779.
  30. Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., 22(3), 567-587. http://dx.doi.org/10.12989/scs.2016.22.3.567.
  31. Marin, M. and Ochsner, A. (2017), "The effect of a dipolar structure on the Holder stability in Green-Naghdi thermoelasticity", Continuum Mech. Thermodynam., 29(6), 1365-1374. https://doi.org/10.1007/s00161-017-0585-7
  32. Marin, M., Vlase, S., Ellahi, R. and Bhatti, M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 863. https://doi.org/10.3390/sym11070863
  33. Milani Shirvan, K., Mamourian, M. and Ellahi, R. (2017), "Numerical investigation and optimization of mixed convection in ventilated square cavity filled with nanofluid of different inlet and outlet port", Int. J. Numer. Method. Heat Fluid Fl., 27(9), 2053-2069. https://doi.org/10.1108/HFF-08-2016-0317.
  34. Milani Shirvan, K., Mamourian, M., Mirzakhanlari, S., Rahimi, A. and Ellahi, R. (2017), "Numerical study of surface radiation and combined natural convection heat transfer in a solar cavity receiver", Int. J. Numer. Method. Heat Fluid Fl., 27(10), 2385-2399. https://doi.org/10.1108/HFF-10-2016-0419.
  35. Mohamed, R., Abbas, I.A. and Abo-Dahab, S. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Commun. Nonlinear Sci. Numer. Simul., 14(4), 1385-1395. https://doi.org/10.1016/j.cnsns.2008.04.006.
  36. Mondal, S. and Othman, M.I. (2020), "Memory dependent derivative effect on generalized piezo-thermoelastic medium under three theories", Waves in Random and Complex Media, 1-18. https://doi.org/10.1080/17455030.2020.1730480.
  37. Mondal, S., Sur, A. and Kanoria, M. (2019), "Thermoelastic response of fiber-reinforced epoxy composite under continuous line heat source", Waves in Random and Complex Media, 1-31. https://doi.org/10.1080/17455030.2019.1699675.
  38. Othman, M.I. and Abbas, I.A. (2011), "Effect of rotation on plane waves at the free surface of a fibre-reinforced thermoelastic half-space using the finite element method", Meccanica, 46(2), 413-421. https://doi.org/10.1007/s11012-010-9322-z.
  39. Othman, M.I. and Abbas, I.A. (2012), "Generalized thermoelasticity of thermal-shock problem in a non-homogeneous isotropic hollow cylinder with energy dissipation", Int. J. Thermophys., 33(5), 913-923. https://doi.org/10.1007/s10765-012-1202-4.
  40. Othman, M.I. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under GN theory", Results in Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.
  41. Othman, M.I. and Mondal, S. (2019), "Memory-dependent derivative effect on wave propagation of micropolar thermoelastic medium under pulsed laser heating with three theories", Int. J. Numer. Method. Heat Fluid Fl., https://doi.org/10.1108/HFF-05-2019-0402.
  42. Sarkar, N. and Mondal, S. (2019), "Transient responses in a two-temperature thermoelastic infinite medium having cylindrical cavity due to moving heat source with memory-dependent derivative", ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik. e201800343. https://doi.org/10.1002/zamm.201800343.
  43. Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater Phys Mech., 22 107-117.
  44. Sheikholeslami, M., Ellahi, R., Shafee, A. and Li, Z. (2019), "Numerical investigation for second law analysis of ferrofluid inside a porous semi annulus: An application of entropy generation and exergy loss", Int. J. Numer. Method. Heat Fluid Fl., 29(3), 1079-1102. https://doi.org/10.1108/HFF-10-2018-0606.
  45. Stehfest, H. (1970), "Algorithm 368: Numerical inversion of Laplace transforms [D5]", Communications of the ACM, 13(1), 47-49. https://doi.org/10.1145/361953.361969.
  46. Sur, A. and Kanoria, M. (2014), "Thermoelastic interaction in a viscoelastic functionally graded half-space under three-phase-lag model", Eur. J. Comput. Mech., 23(5-6), 179-198. https://doi.org/10.1080/17797179.2014.978143.
  47. Sur, A. and Kanoria, M. (2019), "Memory response on thermal wave propagation in an elastic solid with voids", Mechanics Based Design of Structures and Machines, 1-22. https://doi.org/10.1080/15397734.2019.1652647.
  48. Sur, A., Mondal, S. and Kanoria, M. (2020), "Effect of hydrostatic pressure and memory effect on magneto-thermoelastic materials with two-temperatures", Waves in Random and Complex Media, 1-30. https://doi.org/10.1080/17455030.2020.1805524.
  49. Vlase, S., Marin, M., Ochsner, A. and Scutaru, M. (2019), "Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system", Continuum Mech. Thermodynam., 31(3), 715-724. https://doi.org/10.1007/s00161-018-0722-y.
  50. Zeeshan, A., Ellahi, R., Mabood, F. and Hussain, F. (2019), "Numerical study on bi-phase coupled stress fluid in the presence of Hafnium and metallic nanoparticles over an inclined plane", Int. J. Numer. Method. Heat Fluid Fl., https://doi.org/10.1108/HFF-11-2018-0677.
  51. Zenkour, A.M. and Abbas, I.A. (2014), "A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties", Int. J. Mech. Sci., 84 54-60. https://doi.org/10.1016/j.ijmecsci.2014.03.016.