DOI QR코드

DOI QR Code

Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections

  • Bui, Van-Tuong (Department of Civil and Environmental Engineering, Sejong University) ;
  • Vu, Quang-Viet (Institute of Research and Development, Duy Tan University) ;
  • Truong, Viet-Hung (Department of Civil Engineering, Thuyloi University) ;
  • Kim, Seung-Eock (Department of Civil and Environmental Engineering, Sejong University)
  • Received : 2020.09.21
  • Accepted : 2021.01.13
  • Published : 2021.03.10

Abstract

In this study, an effective numerical method is introduced for nonlinear inelastic analyses of rectangular concrete-filled steel tubular (CFST) frames for the first time. A steel-concrete composite fiber beam-column element model is developed that considers material, and geometric nonlinearities, and residual stresses. This is achieved by using stability functions combined with integration points along the element length to capture the spread of plasticity over the composite cross-section along the element length. Additionally, a multi-spring element with a zero-length is employed to model the nonlinear semi-rigid beam-to-column connections in CFST frame models. To solve the nonlinear equilibrium equations, the generalized displacement control algorithm is adopted. The accuracy of the proposed method is firstly verified by a large number of experiments of CFST members subjected to various loading conditions. Subsequently, the proposed method is applied to investigate the nonlinear inelastic behavior of rectangular CFST frames with fully rigid, semi-rigid, and hinged connections. The accuracy of the predicted results and the efficiency pertaining to the computation time of the proposed method are demonstrated in comparison with the ABAQUS software. The proposed numerical method may be efficiently utilized in practical designs for advanced analysis of the rectangular CFST structures.

Keywords

References

  1. ABAQUS (2014), Analysis user's manual version 6.14, Dassault Systems
  2. Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Predicting the axial load capacity of high-strength concrete filled steel tubular columns", Steel Compos. Struct., 19(4), 967-993. https://doi.org/10.12989/scs.2015.19.4.967.
  3. Bayo, E., Cabrero, J. and Gil, B. (2006), "An effective component-based method to model semi-rigid connections for the global analysis of steel and composite structures", Eng. Struct., 28(1), 97-108. https://doi.org/10.1016/j.engstruct.2005.08.001.
  4. Bridge, R.Q. (1976), Concrete filled steel tubular columns, University of Sydney. School of Civil Engineering, Sydney, New South Wales
  5. Bui, V.T., Truong, V.H., Trinh, M.C. and Kim, S.E. (2020), "Fully nonlinear analysis of steel-concrete composite girder with web local buckling effects", Int. J. Mech. Sci., 105729. https://doi.org/10.1016/j.ijmecsci.2020.105729.
  6. Bui, V.T. and Kim, S.E. (2021), "Nonlinear inelastic analysis of semi-rigid steel frames with circular concrete-filled steel tubular columns", Int. J. Mech. Sci., 106273. https://doi.org/10.1016/j.ijmecsci.2021.106273.
  7. Chen, W.F. and Kim, S.E. (1997), LRFD steel design using advanced analysis, CRC press
  8. Chen, W.F. and Lui, E.M. (1987), Structural Stability: Theory and Implementation, Prentice Hall, New York.
  9. Chen, W.F. and Kishi, N. (1989), "Semirigid steel beam-to-column connections: Data base and modeling", J. Struct. Eng., 115(1), 105-119. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:1(105).
  10. Chung, J., Tsuda, K. and Matsui, C. (1999), "High-strength concrete filled square tube columns subjected to axial loading", Proceedings of the 7th East Asia-Pacific Conference on Structural Engineering & Construction, Kochi, Japan, 2, 955-960.
  11. Ding, F.X., Tan, L., Liu, X.M. and Wang, L. (2017), "Behavior of circular thin-walled steel tube confined concrete stub columns", Steel Compos. Struct., 23(2), 229-238, https://doi.org/10.12989/scs.2017.23.2.229.
  12. Ding, F.X., Yin, Y.X., Wang, L., Yu, Y., Luo, L. and Yu, Z.W. (2019b), "Confinement coefficient of concrete-filled square stainless steel tubular stub columns", Steel Compos. Struct., 30(4), 337-350. https://doi.org/10.12989/scs.2019.30.4.337.
  13. Ding, F.X., Zhang, T., Wang, L. and Fu, L. (2019a), "Further analysis on the flexural behavior of concrete-filled round-ended steel tubes", Steel Compos. Struct., 30(2), 149-169. https://doi.org/10.12989/scs.2019.30.2.149.
  14. Du, Z.L., Liu, Y.P., He, J.W. and Chan, S.L. (2019), "Direct analysis method for noncompact and slender concrete-filled steel tube members", Thin-Wall. Struct., 135, 173-184. https://doi.org/10.1016/j.tws.2018.11.007.
  15. Elnashai, A. and Elghazouli, A. (1994), "Seismic behaviour of semi-rigid steel frames", J. Constr. Steel Res., 29(1-3), 149-174. https://doi.org/10.1016/0143-974X(94)90060-4.
  16. Eom, S.S., Vu, Q.V., Choi, J.H., Papazafeiropoulos, G. and Kim, S.E. (2019), "Behavior of composite CFST beam-steel column joints", Steel Compos. Struct., 32(5), 583-594. https://doi.org/10.12989/scs.2019.32.5.583.
  17. Feng, D.C., Wu, G., Sun, Z.Y. and Xu, J.G. (2017), "A flexure-shear Timoshenko fiber beam element based on softened damage-plasticity model", Eng. Struct., 140 483-497. https://doi.org/10.1016/j.engstruct.2017.02.066.
  18. Furlong, R.W. (1967), "Strength of steel-encased concrete beam columns", J. Struct. Div., 93(5), 113-124. https://doi.org/10.1061/JSDEAG.0001761
  19. Gho, W.M. and Liu, D. (2004), "Flexural behaviour of high-strength rectangular concrete-filled steel hollow sections", J. Constr. Steel Res., 60(11), 1681-1696. https://doi.org/10.1016/j.jcsr.2004.03.007.
  20. Hajjar, J.F., Schiller, P.H. and Molodan, A. (1998), "A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip", Eng. Struct., 20(8), 663-676. https://doi.org/10.1016/S0141-0296(97)00107-7.
  21. Han, L.H., Wang, W.D. and Zhao, X.L. (2008), "Behaviour of steel beam to concrete-filled SHS column frames: Finite element model and verifications", Eng. Struct., 30(6), 1647-1658. https://doi.org/10.1016/j.engstruct.2007.10.018.
  22. Kawaguchi, J., Morino, S., Sugimoto, T. and Shirai, J. (2002), "Experimental study on structural characteristics of portal frames consisting of square CFT columns", Proceedings of the Composite Construction in Steel and Concrete IV Conference 2000. 725-733, https://doi.org/10.1061/40616(281)63.
  23. Kim, S.E., Park, M.H. and Choi, S.H. (2001), "Direct design of three-dimensional frames using practical advanced analysis", Eng. Struct., 23(11), 1491-1502. https://doi.org/10.1016/S0141-0296(01)00041-4.
  24. Liang, W., Dong, J. and Wang, Q. (2018), "Axial compressive behavior of concrete-filled steel tube columns with stiffeners", Steel Compos. Struct., 29(2), 151-159. https://doi.org/10.12989/scs.2018.29.2.151.
  25. Liang, Q.Q. (2009), "Performance-based analysis of concrete-filled steel tubular beam-columns, Part I: Theory and algorithms", J. Constr. Steel Res., 65(2), 363-372. https://doi.org/10.1016/j.jcsr.2008.03.007.
  26. Liang, Q.Q., Uy, B. and Liew, J.R. (2006), "Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects", J. Constr. Steel Res., 62(6), 581-591. https://doi.org/10.1016/j.jcsr.2005.09.007.
  27. Liang, Q.Q., Uy, B. and Liew, J.R. (2007), "Local buckling of steel plates in concrete-filled thin-walled steel tubular beam-columns", J. Constr. Steel Res., 63(3), 396-405. https://doi.org/10.1016/j.jcsr.2006.05.004.
  28. Liew, J.R., Yu, C., Ng, Y. and Shanmugam, N. (1997), "Testing of semi-rigid unbraced frames for calibration of second-order inelastic analysis", J. Constr. Steel Res., 41(2-3), 159-195. https://doi.org/10.1016/S0143-974X(97)00009-6.
  29. Lu, Y.Q. and Kennedy, D.J.L. (1994), "The flexural behaviour of concrete-filled hollow structural sections", Can. J. Civ. Eng., 21(1), 111-130. https://doi.org/10.1139/l94-011.
  30. Lui, E. and Chen, W.F. (1986), "Analysis and behaviour of flexibly-jointed frames", Eng. Struct., 8(2), 107-118. https://doi.org/10.1016/0141-0296(86)90026-X.
  31. Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  32. Matsui, C., Tsuda, K. and Ishibashi, Y. (1995), "Slender concrete filled steel tubu lar columns under combined compression and bending", Proceedings of the 4th Pacific Structural Steel Conference, Singapore , Pergamon. 3(10), 29-36.
  33. Michels, H. (1963), "Abscissas and weight coefficients for Lobatto quadrature", Math. Comput., 17(83), 237-244. 10.2307/2003841.
  34. Nader, M. and Astaneh, A. (1991), "Dynamic behavior of flexible, semirigid and rigid steel frames", J. Constr. Steel Res., 18(3), 179-192, https://doi.org/10.1016/0143-974X(91)90024-U.
  35. Ngo-Huu, C., Nguyen, P.C. and Kim, S.E. (2012), "Second-order plastic-hinge analysis of space semi-rigid steel frames", Thin-Wall. Struct., 60, 98-104. https://doi.org/10.1016/j.jcsr.2016.01.009.
  36. Nguyen, P.C. and Kim, S.E. (2014), "An advanced analysis method for three-dimensional steel frames with semi-rigid connections", Finite Elem. Ana.l Des., 80, 23-32. https://doi.org/10.1016/j.finel.2013.11.004.
  37. Nguyen, P.C. and Kim, S.E. (2015), "Second-order spread-of-plasticity approach for nonlinear time-history analysis of space semi-rigid steel frames", Finite Elem. Anal. Des., 105, 1-15. https://doi.org/10.1016/j.finel.2015.06.006.
  38. Papachristidis, A., Fragiadakis, M. and Papadrakakis, M. (2010), "A 3D fibre beam-column element with shear modelling for the inelastic analysis of steel structures", Comput. Mech., 45(6), 553-572, https://doi.org/10.1007/s00466-010-0470-8.
  39. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).
  40. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125).
  41. Spacone, E., Filippou, F.C. and Taucer, F.F. (1996a), "Fibre beam-column model for non‐linear analysis of R/C frames: Part I. Formulation", Earthq. Eng. Struct. Dyn., 25(7), 711-725. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9.
  42. Spacone, E., Ciampi, V. and Filippou, F. (1996b), "Mixed formulation of nonlinear beam finite element", Comput. Struct., 58(1), 71-83, https://doi.org/10.1016/0045-7949(95)00103-N.
  43. Susantha, K., Ge, H. and Usami, T. (2001), "Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes", Eng. Struct., 23(10), 1331-1347. https://doi.org/10.1016/S0141-0296(01)00020-7.
  44. Tan, S. and Seah, L. (1994), "Analysis and tests of flexibly connected thin-walled channel frames", Struct. Eng. Mech., 2(3), 269-284. https://doi.org/10.12989/sem.1994.2.3.269.
  45. Thai, H.T. and Kim, S.E. (2011), "Nonlinear inelastic analysis of concrete-filled steel tubular frames", J. Constr. Steel Res., 67(12), 1797-1805, https://doi.org/10.1016/j.jcsr.2011.05.004.
  46. Thai, H.T., Uy, B., Khan, M., Tao, Z. and Mashiri, F. (2014), "Numerical modelling of concrete-filled steel box columns incorporating high strength materials", J. Constr. Steel Res., 102, 256-265. https://doi.org/10.1016/j.jcsr.2014.07.014.
  47. Thai, H.T., Uy, B. and Khan, M. (2015), "A modified stress-strain model accounting for the local buckling of thin-walled stub columns under axial compression", J. Constr. Steel Res., 111, 57-69. https://doi.org/10.1016/j.jcsr.2015.04.002.
  48. Thai, H.T., Kim, S.E. and Kim, J. (2017), "Improved refined plastic hinge analysis accounting for local buckling and lateral-torsional buckling", Steel Compos. Struct., 24(3), 339-349. https://doi.org/10.12989/scs.2017.24.3.339.
  49. Tomii, M. and Sakino, K. (1979), "Experimental studies on the ultimate moment of concrete filled square steel tubular beam-columns", Trans. Archit. Inst. Japan. 275, 55-65. DOI:10.3130/aijsaxx.275.0_55.
  50. Truong, V. and Kim, S.-E. (2017), "An efficient method for reliability-based design optimization of nonlinear inelastic steel space frames", Struct. Multidiscip. Optim., 56(2), 331-351. https://doi.org/10.1007/s00158-017-1667-7.
  51. Truong, V.H. and Kim, S.E. (2018), "Reliability-based design optimization of nonlinear inelastic trusses using improved differential evolution algorithm", Adv. Eng. Softw., 121 59-74. https://doi.org/10.1016/j.advengsoft.2018.03.006.
  52. Uy, B. (1998), "Local and post-local buckling of concrete filled steel welded box columns", J. Constr. Steel Res., 47(1-2), 47-72. https://doi.org/10.1016/S0143-974X(98)80102-8.
  53. Uy, B. (2000), "Strength of concrete filled steel box columns incorporating local buckling", J. Struct. Eng., 126(3), 341-352. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(341).
  54. Uy, B. (2001), "Strength of short concrete filled high strength steel box columns", J. Constr. Steel Res., 57(2), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6.
  55. Wang, L., Cao, X.X., Ding, F.X., Luo, L., Sun, Y., Liu, X.M. and Su, H.l. (2018), "Composite action of concrete-filled double circular steel tubular stub columns", Steel Compos. Struct., 29(1), 77-90. https://doi.org/10.12989/scs.2018.29.1.077.
  56. Wang, J. and Guo, L. (2020), "Experimental and analytical behavior of square CFDST column blind bolted to steel beam connections", Int. J. Steel Struct. 1-24. https://doi.org/10.1007/s13296-020-00310-y.
  57. Wang, J. and Zhang, N. (2017), "Performance of circular CFST column to steel beam joints with blind bolts", J. Constr. Steel Res., 130 36-52, https://doi.org/10.1016/j.jcsr.2016.11.026.
  58. Wang, W.D., Han, L.H. and Zhao, X.L. (2009), "Analytical behavior of frames with steel beams to concrete-filled steel tubular column", J. Constr. Steel Res., 65(3), 497-508. https://doi.org/10.1016/j.jcsr.2008.11.002.
  59. Vrcelj, Z. and Uy, B. (2002), "Behaviour and design of steel square hollow sections filled with high strength concrete", Aust. J. Struct. Eng., 3(3), 153-170. https://doi.org/10.1080/13287982.2002.11464902.
  60. Vu, Q.V., Thai, D.K. and Kim, S.E. (2018), "Effect of intermediate diaphragms on the load-carrying capacity of steel-concrete composite box girder bridges", Thin-Wall. Struct., 122, 230-241. https://doi.org/10.1016/j.tws.2017.10.024.
  61. Yang, Y.B. and Shieh, M.S. (1990), "Solution method for nonlinear problems with multiple critical points", AIAA J., 28(12), 2110-2116. https://doi.org/10.2514/3.10529.
  62. Yang, Y.F. and Hang, L.H. (2001), "Experimental studies on the behavior of concrete-filled RHS members subjected to pure bending", J. Earthq. Eng. Eng. Vib., 21(3), 41-48.
  63. Zhang, T., Ding, F.X., Wang, L., Liu, X.M. and Jiang, G.S. (2018), "Behavior of polygonal concrete-filled steel tubular stub columns under axial loading", Steel Compos. Struct., 28(5), 573-588. https://doi.org/10.12989/scs.2018.28.5.573.