DOI QR코드

DOI QR Code

Transient memory response of a thermoelectric half-space with temperature-dependent thermal conductivity and exponentially graded modulii

  • Ezzat, Magdy A. (Department of Mathematics, College of Science and Arts, Qassim University)
  • 투고 : 2020.07.09
  • 심사 : 2021.02.02
  • 발행 : 2021.02.25

초록

In this work, we consider a problem in the context of thermoelectric materials with memory-dependent derivative for a half space which is assumed to have variable thermal conductivity depending on the temperature. The Lamé's modulii of the half space material is taken as a function of the vertical distance from the surface of the medium. The surface is traction free and subjected to a time dependent thermal shock. The problem was solved by using the Laplace transform method together with the perturbation technique. The obtained results are discussed and compared with the solution when Lamé's modulii are constants. Numerical results are computed and represented graphically for the temperature, displacement and stress distributions. Affectability investigation is performed to explore the thermal impacts of a kernel function and a time-delay parameter that are characteristic of memory dependent derivative heat transfer in the behavior of tissue temperature. The correlations are made with the results obtained in the case of the absence of memory-dependent derivative parameters.

키워드

참고문헌

  1. Bagley, R. L. and Torvik, P. J. (1986), "On the fractional calculus model of viscoelastic behavior", J. Rheol., 30, 133-155. https://doi.org/10.1122/1.549887.
  2. Biswas, S. (2019), "Modeling of memory-dependent derivatives in orthotropic medium with three-phase-lag model under the effect of magnetic field", Mech. Based Des. Struct. Mach., 47(3), 302-318. DOI:10.1080/15397734.2018.1548968.
  3. Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Mech. Tech. Phys., 27(3), 240-253. DOI:10.1063/1.1722351.
  4. Bo, Y., Xiaoyun, J. and Huanying, X. (2015), "A novel compact numerical method for solving the two dimensional non-linear fractional reaction-subdiffusion equation", Num. Algor., 68(4), 923-950. DOI:10.1007/s11075-014-9877-1
  5. Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: a review of recent literature", Appl. Mech. Rev., 51(12), 705-729. DOI:10.1115/1.3098984
  6. Daikh, A.A., Bensaid, I. and Zenkour, A.M. (2020), "Temperature dependent thermomechanical bending response of functionally graded sandwich plates", Eng. Res. Expr., 2, 015006. DOI:10.1088/2631-8695/ab638c.
  7. Durbin, F. (1973), "Numerical inversion of Laplace transforms: an effective improvement of Dubner and Abate's method", Comput. J., 17(4), 371-376. DOI: 10.1093/comjnl/17.4.371.
  8. Ezzat, M.A. (2006), "The relaxation effects of the volume properties of electrically conducting viscoelastic material", Mater. Sci. Eng.: B, 130 (1-3), 1-13. DOI:10.1016/j.mseb.2006.01.020.
  9. Ezzat, M.A. (2011), "Thermoelectric MHD with modified Fourier's law", Int. J. Therm. Sci., 50(4), 449-455. DOI:10.1016/j.ijthermalsci.2010.11.005.
  10. Ezzat, M.A. and El-Bary, A.A. (2016), "Modeling of fractional magneto-thermoelasticity for a perfect conducting materials", Smart Struct. Syst. 18(4), 707-731. https://doi.org/10.12989/sss.2016.18.4.707.
  11. Ezzat, M.A. and El-Bary, A.A. (2017), "A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer", Steel Compos. Struct., 25(2),177-186. https://doi.org/10.12989/scs.2017.25.2.177.
  12. Ezzat, M.A. and El-Karamany, A.S. (2002), "The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times", Int. J. Eng. Sci., 40(11), 1275-1284. DOI: 10.1016/S0020-7225(01)00099-4
  13. Ezzat, M.A., El-Karamany, A.S. and El-Bary, A. (2016), "Electro-thermoelasticity theory with memory-dependent derivative heat transfer", Int. J. Eng. Sci., 99(2), 22-38. DOI:10.1016/j.ijengsci.2015.10.01.
  14. Ezzat, M.A. and Youssef, H.M. (2010), "Stokes' first problem for an electro-conducting micropolar fluid with thermoelectric properties", Can. J. Phys. 88(1), 35-48. DOI:10.1139/P09-100.
  15. Goldstein, R.J., et al. (2005), "Heat transferda review of 2002 literature", Int. J. Heat. Mass Transf., 48, 819-927. DOI: 10.1016/j.ijheatmasstransfer.2004.10.011.
  16. Green, A. and Lindsay, K. (1972), "Thermoelasticity", J. Elast., 2 (1),1-7. DOI:10.1007/BF00045689.
  17. Hetnarski, R.B., Ignaczak J. (2000), "Nonclassical dynamical thermoelasticity", Int. J. Solids Struct., 37(1), 215-224. DOI:10.1016/S0020-7683(99)00089-X
  18. Hiroshige, Y., Makoto, O., Toshima, N. (2007), "Thermoelectric figure-of-merit of iodine-doped copolymer of phenylenevinylene with dialkoxyphenylenevinylene", Synthetic Metals., 157(10-12), 467-474. DOI:10.1016/j.synthmet.2007.05.003.
  19. Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Comp. Appl. Math., 10(1), 113-132. DOI:10.1016/0377-0427(84)90075-X.
  20. Hicks L D, Dresselhaus, M.S. (1993), "Thermoelectric figure of merit of a one dimensional conductor", Phys. Rev. B., 47,16631-16634. https://doi.org/10.1103/physrevb.47.16631
  21. Hu, W., Deng, Z., Han, S. and Zhang, W. (2013), "Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs", J. Copmu. Phys., 235, 394-406.DOI:10.1016/j.jcp.2012.10.032
  22. Hu, W., Ye, J. and Deng, Z. (2020a), "Internal resonance of a flexible beam in a spatial tethered system", J. Sound Vib., 475, 115286. DOI:10.1016/j.jsv.2020.115286
  23. Hu, W., Xu, M., Song, J., Gao, Q. and Deng, Z. (2020b), "Coupling dynamic behaviors of flexible stretching hub-beam system", Mech. Syst. Signal Pr., 151, 107389. DOI: 10.1016/j.ymssp.2020.107389
  24. Hu, W., Wang, Z., Zhao, Y. and Deng, Z. (2020c), "Symmetry breaking of infinite-dimensional dynamic system", Appl. Math. Let., 103, 106207. DOI: 10.1016/j.aml.2019.106207.
  25. Hu, W., Zhang, C. and Deng, Z. (2020e), "Vibration and elastic wave propagation in spatial flexible damping panel attached to four special springs", Comm. Nonlinear Sci. Numer. Simulat., 84, 105199. DOI: 10.1016/j.cnsns.2020.105199.
  26. Hu, W., Yu, L. and Deng, Z. (2020e), "Minimum control rnergy of spatial beam with assumed attitude adjustment target", Acta Mech. Solida Sin., 33(1), 51-60. DOI: 10.1007/s10338-019-00132-4.
  27. Kothari, S. and Mukhopadhyay, S.A. (2011), "Problem on elastic half space under fractional order theory of thermoelasticity", J. Therm. Stress., 34, 724-739. DOI:10.1080/01495739.2010.550834.
  28. Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions in a transversely isotropic magnetothermoelastic with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Modell., 40(13-14), 6560-6575. DOI: 10.1016/j.apm.2016.01.061.
  29. Kumar, R., Sharma, N. and Lata, P. (2017), "Effects of Hall current and two temperatures in transversely isotropic magnetothermoelastic with and without energy dissipation due to Ramp type heat", Mech. Adv. Mat. Struct., 24(8), 625-635. DOI: 10.1080/15376494.2016.1196769.
  30. Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., 22(3), 567-587. https://doi.org/10.12989/scs.2016.22.3.567.
  31. Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation", Steel Compos. Struct., 32(6), 779-793. https://doi.org/10.12989/scs.2019.32.6.779.
  32. Lata, P. and Singh, S. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic soliddue to inclined load", Steel Compos. Struct., 33(1), 955-963. https://doi.org/10.12989/scs.2019.33.1.123.
  33. Lord, H. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. DOI:10.1016/0022-5096(67)90024-5.
  34. Lotfy, K. and Sarkar, N. (2017), "Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature", Mech. Time-Dep. Mater., 21(4), 519-534. DOI:0.1007/s11043-017-9340-5. https://doi.org/10.1007/s11043-017-9340-5
  35. Marin, M. (1995), "On existence and uniqueness in thermoelasticity of micropolar bodies", CR Acad Sci. Paris, Serie II, B, 321(12), 375-480.
  36. Mashat, D.S. and Zenkour, A.M. (2020), "Modified DPL Green-Naghdi theory for thermoelastic vibration of temperature-dependent nanobeams", Phys. Res., 16, 102845. DOI: 10.1016/j.rinp.2019.102845.
  37. Morelli, D.T. (1997), Thermoelectric devices, (Eds., G.L. Trigg, E.H. Immergut), Encyclopedia of Applied Physics, 21, Wiley-VCH, New York.
  38. Mukhopadhyay, S. and Kumar, R. (2009), "Thermoelastic interactions on two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity", J. Therm. Stress., 32(4), 341-360. DOI:10.1080/01495730802637183.
  39. Nayfeh, A.H. (1973), Perturbation Methods, Wiley Interscience, New York.
  40. Nolas, G.N., Sharp, J. and Goldsmid, H.J. (2001), Thermoelectrics: Basic Principles and New Materials Developments, Spinger, NewYork.
  41. Othman, M.I., Ezzat, M.A., Zaki, S.A. and El-Karamany, A.S. (2002), "Generalized thermo-viscoelastic plane waves with two relaxation times", Int. J. Eng. Sci., 40(12), 1329-1347. DOI:10.1016/S0020-7225(02)00023-X.
  42. Povstenko, Y.Z. (2009), "Thermoelasticity that uses fractional heat conduction equation", J. Math. Sci., 162(2), 296-305. DOI:10.1007/s10958-009-9636-3.
  43. Rowe, D.M. (1995), "Handbook of Thermoelectrics", CRC Press.
  44. Sharma, K. and Marin, M. (2014), "Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids", An. St. Univ. Ovidius Constanta, 22(2), 151-175. 10.2478/auom-2014-0040.
  45. Shercliff, J.A. (1979), "Thermoelectric magnetohydrodynamics", J. Fluid Mech., 191(3), 231-251. DOI:10.1017/S0022112079000136.
  46. Sherief, H.H. (1986), "Fundamental solution of generalized thermoelastic problem for short times", J. Therm. Stress., 9(2),151-164. DOI:10.1080/01495738608961894.
  47. Sherief, H., El-Sayed, A.M.A. and Abd El-Latief, A.M. (2010), "Fractional order theory of thermoelasticity", Int. J. Solids Struct., 47(2), 269-275. DOI:10.1016/j.ijsolstr.2009.09.034.
  48. Sherief, H. and Abd El-Latief, A.M. (2013), "Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity", Int. J. Mech. Sci., 74, 185-189. DOI:10.1016/j.ijmecsci.2013.05.016.
  49. Sherief, H. and Abd El-Latief, A.M. (2016), "Modeling of variable Lame's Modulii for a FGM generalized thermoelastic half Space", Lat. Am. J. Solid Struct., 13 (4), 715-730. DOI:10.1590/1679-78252086.
  50. Sherief, H.H. and Hussein, E.M. (2018), "Contour integration solution for a thermoelastic problem of a spherical cavity", Appl. Math. Comput., 320, 557-571. DOI: 10.1016/j.amc.2017.10.024.
  51. Sobhy, M. and Zenkour, M.A. (2020), "A comprehensive study on the size-dependent hygrothermal analysis of exponentially graded microplates on elastic foundations", Mech. Adv. Mat Struct., 27(10), 816-830. DOI:10.1080/15376494.2018.1499986.
  52. Tiwari, R. and Mukhopadhyay, S. (2018), "Analysis of wave propagation in the presence of a continuous line heat source under heat transfer with memory dependent derivatives", Math. Mech. Solids, 23(5), 820-834. DOI:10.1177/1081286517692020.
  53. Tritt, T.M. (2000), "Semiconductors and semimetals, recent trends in thermoelectric materials research", Academic Press, San Diego.
  54. Tumanski S. (1999), "Nondestructive testing of the stress effects in electrical steel by magnetovision method", Proceedings of the International symposium on non-linear electromagnetic systems, ISEM '99 conference, May 10, Pavia, Italy.
  55. Xue, Z.N., Chen, Z.T. and Tian, X.G. (2018), "Thermoelastic analysis of a cracked strip under thermal impact based on memory-dependent heat conduction model", Eng. Frac. Mech., 200, 479-498. DOI:10.1016/j.engfracmech.2018.08.018.
  56. Yu, YJ., Tian, X.G. and Tian, J.L. (2013), "Fractional order generalized electro-magneto-thermo-elasticity", Eur. J. Mech., A/Solids, 42,188-202. DOI:10.1016/j.euromechsol.2013.05.006.
  57. Yu, Y.J., Hu, W. and Tian, X.G. (2014), "A novel generalized thermoelasticity model based on memory-dependent derivative", Int. J. Eng. Sci., 81(3-4), 123-134. DOI:10.1016/j.ijengsci.2014.04.014.
  58. Yu, Y.J. and Deng, Z.C. (2020), "New insights on microscale transient thermoelastic responses for metals with electron-lattice coupling mechanism", Euro. J. Mech. Solids, 80, 103887. DOI:10.1016/j.euromechsol.2019.103887.
  59. Zenkour, A.M. (2017),"Bending analysis of piezoelectric exponentially graded fiber-reinforced composite cylinders in hygrothermal environments", Int. J. Mech. Mat. Des., 13, 515-529. DOI: 10.1007/s10999-016-9351-4.
  60. Zenkour, A.M. and Abouelregal, A. (2019),"Thermoelastic vibration of temperature-dependent nanobeams due to rectified sine wave heating-A state space approach", J. Appl. Compu. Mech., 5(2), 299-310. DOI:0.22055/jacm.2018.26311.1323. https://doi.org/10.22055/jacm.2018.26311.1323
  61. Zenkour, A.M. and Alghanmi, R.A. (2019), "Bending of exponentially graded plates integrated with piezoelectric fiber-reinforced composite actuators resting on elastic foundations", Eur. J. Mech. A/Solids, 75, 461-471. DOI: 10.1016/j.euromechsol.2019.03.003.
  62. Zhang, H., Xiaoyun, J. and Xiu, Y. (2018), "A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem", Appl. Math. Comput., 320, 302-318. DOI:10.1016/j.amc.2017.09.040.