References
- Amoozgar, M.R. and Shahverdi, H. (2016), "Dynamic instability of beams under tip follower forces using geometrically exact, fully intrinsic equations", Lat. Am. J. Solid. Struct., 13, 3022-3038. https://doi.org/10.1590/1679-78253010.
- Beck, M. (1952), "Die Knicklast des einseitig eingespannten, tangential gedruckten Stabes", J. Appl. Math. Phys., 3, 225-228. https://doi.org/10.1007/BF02008828.
- Bolotin, V.V. (1963), Nonconservative Problems of Theory of Elastic Stability, Pergamon Press.
- Bolotin, V.V. (1964), The Dynamic Stability of Elastic Systems, Holden-Day Inc.
- Brank, B. and Lovrencic, M. (2018), "Simulation of shell buckling by implicit dynamics and numerically dissipative schemes", Thin Wall. Struct., 132, 682-699. https://doi.org/10.1016/j.tws.2018.08.010.
- Culver, D., McHugh, K.A. and Dowell, E.H. (2019), "An assessment and extension of geometrically nonlinear beam theories", Mech. Syst. Signal Pr., 134, 106340. https://doi.org/10.1016/j.ymssp.2019.106340.
- Dujc, J., Brank, B. and Ibrahimbegovic, A. (2010), "Multi-scale computational model for failure analysis of metal frames that includes softening and local buckling", Comput. Meth. Appl. Mech. Eng., 199(21-22), 1371-1385. https://doi.org/10.1016/j.cma.2009.09.003.
- Elishakoff, I. (2005), "Controversy associated with the so-called "Follower Forces": Critical overview", Appl. Mech. Rev., 58(2), 117-142. https://doi.org/10.1115/1.1849170.
- Farhat, C., Kwan-yu Chiu, E., Amsallem, D., Sholte, J. and Ohayon, R. (2013), "Modeling of fuel sloshing and its physical effects on flutter", AIAA J., 51(9), 100-114. https://doi.org/10.2514/1.J052299.
- Fazelzadeh, S.A., Karimi-Nobandegani, A. and Mardanpour, P. (2017), "Dynamic Stability of Pretwisted Cantilever Beams Subjected to Distributed Follower Force", AIAA J., 55(3), 955-964. https://doi.org/10.2514/1.J055421.
- Gasparini, A.M., Saetta, A.V. and Vitaliani, R.V. (1995), "On the stability and instability regions of non-conservative continuous system under partially follower forces", Comput. Meth. Appl. Mech. Eng., 124, 63-78. https://doi.org/10.1016/0045-7825(94)00756-D.
- Hajdo, E., Ibrahimbegovic, A. and Dolarevic, S. (2020), "Buckling analysis of complex structures with refined model built of frame and shell finite elements", Coupl. Syst. Mech., 9, 29-46. http://dx.doi.org/10.12989/csm.2020.9.1.029.
- Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Springer, Berlin, Germany.
- Ibrahimbegovic, A. and Taylor, R.L. (2002), "On the role of frame-invariance of structural mechanics models at finite rotations", Comput. Meth. Appl. Mech. Eng., 191, 5159-5176. https://doi.org/10.1016/S0045-7825(02)00442-5.
- Ibrahimbegovic, A., Hajdo, E. and Dolarevic, S. (2013), "Linear instability or buckling problems for mechanical and coupled thermomechanical extreme conditions", Coupl. Syst. Mech., 2, 349-374. http://dx.doi.org/10.12989/csm.2013.2.4.349.
- Imamovic I., Ibrahimbegovic, A. and Hajdo, E. (2019), "Geometrically exact initially curved Kirchhoff's planar elasto-plastic beam", Coupl. Syst. Mech., 8, 537-553. https://doi.org/10.12989/csm.2019.8.6.537.
- Jeronen, J. and Kouhia, R. (2015), "On the effect of damping on stability of nonconservative systems", Proceedings XII Finish Mechanics Days, Eds. R. Kouhia et al., 77-82.
- Lacarbonara, W. and Yabuno, H. (2006), "Refined models of elastic beams undergoing large in-plane motions: theory and experiment", Int. J. Solid. Struct., 43(17), 5066-5084. https://doi.org/10.1016/j.ijsolstr.2005.07.018.
- Langthjem, M.A. and Sugiyama, Y. (2000), "Dynamics stability of column subjected to follower load", J. Sound Vib., 238(5), 809-851. https://doi.org/10.1006/jsvi.2000.3137.
- Lozano, R., Brogliato, B., Egeland, O. and Maschke, B. (2000), Dissipative Systems Analysis and Control: Theory and Applications, Springer.
- Masjedi, P.K. and Ovesy, H.R. (2015) "Large deflection analysis of geometrically exact spatial beams under conservative and nonconservative loads using intrinsic equations", Acta Mech., 226, 1689-1706. https://doi.org/10.1007/s00707-014-1281-3.
- McHugh, K.A. and Dowell, E.H. (2020), "Nonlinear response of an inextensible, free-free beam subjected to a nonconservative follower force", J. Comput. Nonlin. Dyn., 15(2), 021003. https://doi.org/10.1115/1.4045532.
- Medic, S., Dolarevic, S. and Ibrahimbegovic, A. (2013), "Beam model refinement and reduction", Eng. Struct., 50, 158-169. https://doi.org/10.1016/j.engstruct.2012.10.004.
- Mejia Nava, A.R., Ibrahimbegovic, A. and Lozano, R. (2020), "Instability phenomena and their control in statics and dynamics: Application to deep and shallow truss and frame structures", Coupl. Syst. Mech., 9, 47-62. http://dx.doi.org/10.12989/csm.2020.9.1.047.
- Piculin, S. and Brank, B. (2015), "Weak coupling of shell and beam computational models for failure analysis of steel frames", Finite Elem. Anal. Des., 97, 20-42. https://doi.org/10.1016/j.finel.2015.01.001.
- Sugiyama, Y., Langthjem, M.A. and Katayama, K. (2019), Dynamic Stability of Columns under Nonconservative Forces: Theory and Experiment, Springer.
- Timoshenko, S. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw Hill.