참고문헌
- Abubakar, A.U., Akcaoglu, T. and Marar, K. (2018), "P-value significance level test for high-performance steel fiber concrete (HPSFC)", Comput. Concrete, 21(5), 485-493. https://doi.org/10.12989/cac.2018.21.5.485.
- Abubakar, A.U., Akcaoglu, T. and Marar, K. (2020), "Evaluation of workability parameters for hooked-end high strength steel fiber concrete mixes", Roman. J. Mater., 50(3), 411-419.
- ACI544.1R (2001), State-of-the-Art Report on Fiber Reinforced Concrete, American Concrete Institute, Farmington Hills, MI, USA.
- Akcaoglu, T. (2003), "Interfacial transition zone behaviour of concrete by means of a single coarse aggregate model", PhD Thesis, Eastern Mediterranean University, North Cyprus.
- ASTM A820 (2016), Standard Specification for Steel Fibers for Fiber-Reinforced Concrete, ASTM International, West Conshohocken, PA, USA.
- ASTM C117 (2013), Standard Test Method for Materials Finer than 75-㎛ (No. 200) Sieve in Mineral Aggregates by Washing, ASTM International, West Conshohocken, PA, USA.
- ASTM C127 (2015), Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, ASTM International, West Conshohocken, PA, USA.
- ASTM C128 (2015), Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA, USA.
- ASTM C136 (2014), Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA, USA.
- ASTM C192 (2016), Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, USA.
- ASTM C29 (2017), Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate, ASTM International, West Conshohocken, PA, USA.
- ASTM C33 (2016), Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA, USA.
- ASTM C494 (2017), Standard Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, PA, USA.
- ASTM C595 (2017), Standard Specification for Blended Hydraulic Cements, ASTM International, West Conshohocken, PA, USA.
- Barros, J.A.O. and Figueiras, J.A. (1999), "Flexural behavior of SFRC: Testing and modeling", J. Mater. Civil Eng., 11(4), 331-339. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(331).
- BS EN 1008 (2002), Mixing Water for Concrete, Specification for Sampling, Testing and Assessing the Suitability of Water, including Water Recovered from Processes in the Concrete Industry, as Mixing Water for Concrete, British Standard Institution, BSI London.
- BS EN 1097-2 (2010), Tests for Mechanical and Physical Properties of Aggregates, Methods for the Determination of Resistance to Fragmentation, British Standard Institution, BSI, London.
- BS EN 12390-3 (2009), Testing Hardened Concrete, Compressive Strength of Test Specimens, British Standard Institution, BSI London.
- BS EN 12390-6 (2009), Testing Hardened Concrete, Tensile Splitting Strength of Test Specimens, British Standard Institution, BSI London.
- Eren, O., Marar, K. and Celik, T. (1999), "Effects of steel fibers on some mechanical properties of high-strength fiber-reinforced concrete", J. Test. Eval., 27, 380-387. https://doi.org/10.1520/JTE12166J
- Fu, C.Q., Ma, Q.Y., Jin, X.Y., Shah, A.A. and Tian, Y. (2014), "Fracture property of steel fiber reinforced concrete at early age", Comput. Concrete, 13(1), 31-47. https://doi.org/10.12989/cac.2014.13.1.031.
- Gettu, R., Oliveira, M.O.F., Carol, I. and Aguado, A. (1992), "Influence of transverse compression on mode I fracture of concrete", Fracture Mechanics of Concrete Structures, Ed. Bazant, Z.P., Elsevier Science, London.
- Lihua, Z., Yunsheng, Z., Chuanbei, L., Laibo, L. and Kaijing, T. (2017), "Study on microstructure and bond strength of interfacial transition zone between cement paste and high-performance lightweight aggregates prepared from ferrochromium slag", Constr. Build. Mater., 142, 31-41. https://doi.org/10.1016/j.conbuildmat.2017.03.083.
- Liniers, A.D. (1987), "Microcracking of concrete under compression and its influence on tensile strength", Mater. Struct., 20, 111-116. https://doi.org/10.1007/BF02472746.
- Mindess, S. and Diamond, S. (1982), "The cracking and fracture of mortars", Mater. Struct., 15(86), 107-113. https://doi.org/10.1007/BF02473571.
- Mindess, S. and Young, J.F. (1981), Concrete, 2nd Edition, Prentice Hall.
- Nili, M. and Ehsani, A. (2015), "Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume", Constr. Build. Mater., 75, 174-183. https://doi.org/10.1016/j.matdes.2015.03.024.
- Oliveira, M.O.F. (1992), "Fatigue and microcracking in high strength concretes", Doctoral Thesis, School of Civil Engineering, Technical University of Catalunya, Barcelona, Spain.
- Richie, A.G.B. (1962), "The triaxial testing of fresh concrete", Mag. Concrete Res., 14(40), 37-42. https://doi.org/10.1680/macr.1962.14.40.37.
- Shah, S.P. and Sankar, R. (1987), "Internal cracking and strain-softening response of concrete under uniaxial compression", ACI Mater. J., 84(3), 200-212.
- Shah, S.P., Swartz, S.E. and Ouyang, C. (1995), Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock, and Quasi-Brittle Materials, John Wiley & Sons, New York.
- Sicat, E., Gong, F., Ueda, T. and Zhang, D. (2014), "Experimental investigation of the deformational behavior of the interfacial transition zone (ITZ) in concrete during freezing and thawing cycles", Constr. Build. Mater., 65, 122-131. https://doi.org/10.1016/j.conbuildmat.2014.04.035.
- Tinic, C. and Bruhwiler, E. (1985), "Effect of compressive loads on the tensile strength of concrete at high strain rates", Int. J. Compos. Lightw. Concrete, 7, 103-108. https://doi.org/10.1016/0262-5075(85)90065-X.
- Traina, L.A. and Mansour, S.A. (1991), "Biaxial strength and deformational behavior of plain and steel fiber concrete", ACI Mater. J., 88, 354-364.
- Van Mier, J.G.M. (1990), "Internal crack detection in single edge notched concrete plates subjected touniform boundary displacement", Micromechanics of Failure of Quasi Brittle Materials, Eds. Shah, S.P., Swartz, S.E. and Wang, M.I., Elsevier Applied Science Publishers, London.
- Vargas, P., Restrepo-baena, O. and Tobon, J.I. (2017), "Microstructural analysis of interfacial transition zone (ITZ) and the impact on the compressive strength of lightweight concretes", Constr. Build. Mater., 137, 381-389. https://doi.org/10.1016/j.conbuildmat.2017.01.101.
- Xu, J., Wang, B. and Zuo, J. (2017), "Modification effect of nanosilica on the interfacial transition zone in concrete: A multiscale approach", Cement Concrete Compos., 81, 1-10. https://doi.org/10.1016/j.cemconcomp.2017.04.003.
- Zhang, P., Gao, J.X., Dai, X.B., Zhang, T.H. and Wang, J. (2016), "Fracture behavior of fly ash concrete containing silica fume", Struct. Eng. Mech., 59(2), 261-275. http://dx.doi.org/10.12989/sem.2016.59.2.261.
- Zhang, P., Guan, Q.Y., Liu, C.H. and Li, Q.F. (2013), "Study on notch sensitivity of fracture properties of concrete containing nano-SiO particles and fly ash", J. Nanomater., 2013, Article ID 381682. https://doi.org/10.1155/2013/381682.
- Zhang, P., Liu, C.H., Li, Q.F., Zhang, T.H. and Wang, P. (2014), "Fracture properties of steel fibre reinforced high performance concrete containing nano-SiO and fly ash", Curr. Sci., 106(7) 980.