DOI QR코드

DOI QR Code

Thermal stress effects on microtubules based on orthotropic model: Vibrational analysis

  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Hussain, Muzamal (Research Scholar, Department of Mathematics, Govt. College University Faisalabad) ;
  • Fareed, Khurram (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Safeer, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Khedher, Khaled Mohamed (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Ahmad, Manzoor (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Naeem, M. Nawaz (Research Scholar, Department of Mathematics, Govt. College University Faisalabad) ;
  • Qazaq, Amjad (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Qahtani, Abdelaziz Al (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Mahmoud, S.R. (GRC Department, Faculty of Applied studies, King Abdulaziz University) ;
  • Alwabli, Afaf S. (Department of Biological Sciences, Faculty of Science, King Abdulaziz University) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2020.12.10
  • Accepted : 2021.02.17
  • Published : 2021.03.25

Abstract

Vibration of protein microtubules is investigated based upon Orthotropic Elastic Shell Model, considering the effect of thermal stresses. The complete analytical formulas of thermal vibration for microtubules are obtained. It is observed that the effects of thermal stresses on the vibrational frequency mode are more significant when the longitudinal and circumferential wave vectors are large enough. But when the length of wave vector reduces to 5 nm, these effects have no significant effects. The present results well agree with the lattice vibrations of microtubules. Moreover, the results show that the effects of thermal stresses due to small change in temperature are not so significant but with the increase in temperature its effects are obvious.

Keywords

References

  1. Albert, O.T. (1994), "Biology and ecology of Norway pout (Trisopterus esmarki Nilsson, 1855) in the Norwegian Deep",. ICES J. Marine Sci., 51(1), 45-61. https://doi.org/10.1006/jmsc.1994.1005.
  2. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585. http://dx.doi.org/10.12989/acc.2018.6.6.
  3. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  4. Bajer, A.S., Smirnova, E.A. and Mole-Bajer, J. (1993), "Microtubule converging centers-Implications for microtubule dynamics in higher plants chromosome segregation and aneuploidy", 225-239. https://doi.org/10.1007/978-3-642-84938-1_19.
  5. Buchet, J.P., Lauwerys, R., Roels, H., Bernard, A., Bruaux, P., Claeys, F., ... & Nick, L. (1990), "Renal effects of cadmium body burden of the general population", Lancet, 336(8717), 699-702. https://doi.org/10.1016/0140-6736(90)92201-r.
  6. Chung-Davidson, Y.W., Huertas, M. and Li, W. (2010), "A review of research in fish pheromones Chemical communication in crustaceans", 467-482. https://doi.org/10.1007/978-0-387-77101-4_24.
  7. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., 7(2), 65. http://dx.doi.org/10.12989/acc.2019.7.2.065.
  8. Feldhendler, D. (2002), "Augusto Boal and Jacob L. Moreno: theatre and therapy playing boal", 97-119. https://doi.org/10.1177/1359105307086710.
  9. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. http://dx.doi.org/10.12989/cac.2018.21.4.431.
  10. Hardin, R. (2015), Collective Action, RFF Press.
  11. Heireche, H., Tounsi, A., Benhassaini, H., Benzair, A., Bendahmane, M., Missouri, M. and Mokadem, S. (2010), "Nonlocal elasticity effect on vibration characteristics of protein microtubules", Physica E: Low-Dimens. Syst. Nanostruct., 42(9), 2375-2379. https://doi.org/10.1016/j.physe.2010.05.017.
  12. Isaacs, J. and Downing, T. (1998), "Cold War: for 45 years the world held its breath", Bantam. https://doi.org/Cold-War-Years-World-Breath/dp/059304309X.
  13. Jweeg, M.J. and Alazzawy, W.I. (2007), "A suggested analytical solution for laminated closed cylindrical shells using General Third Shell Theory (GTT)", Al-Nahrain J. Eng. Sci., 10(1), 11-26.
  14. Jweeg, M.J. and Alazzawy, W.I. (2010), "A study of free vibration and fatigue for cross-ply closed cylindrical shells using General Third shell Theory (GTT)", J. Eng., 16(2).
  15. Jwege, M.J. and Majeed, W.I. (2009) "Free vibration analysis solution for laminated truncated conical shells using high orde theory", 6th Conf. of the College of Eng. Univ. of Baghdad, 3, 208-225.
  16. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., 3(1), 39. http://dx.doi.org/10.12989/acc.2015.3.1.039.
  17. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
  18. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
  19. Keller, W. and Armstrong, K. (1978), "High frequencey production of microspore derived plants from Brassica napus anther cultures", Z Pflanzenzucht. https://doi.org/10.1007/BF01403347.
  20. Kononova, O., Kholodov, Y., Theisen, K.E., Marx, K.A., Dima, R.I., Ataullakhanov, F.I., ... & Barsegov, V. (2014), "Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico", J. Am. Chem. Soc., 136(49), 17036-17045. https://doi.org/10.1021/ja506385p.
  21. Kreider, J.C. and Blumberg, M.S. (2005), "Geotaxis and beyond: Commentary on Motz and Alberts (2005)", Neurotoxic. Teratology, 27(4), 535-538. https://doi.org/10.1016/j.ntt.2005.06.002.
  22. Kurachi, M., Hoshi, M. and Tashiro, H. (1995), "Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity", Cell Motility Cytoskeleton, 30(3), 221-228. https://doi.org/10.1002/cm.970300306.
  23. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  24. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., 5(5), 539. http://dx.doi.org/10.12989/acc.2017.5.5.539.
  25. Mirzaei, D., Bidgoli, M.R. and Kolahchi, R. (2020), "Hydro-mechanical response in polymeric pipes assuming interaction of fluid", Int. J. Hydromechatron., 3(4), 334-348. https://doi.org/10.1504/IJHM.2020.112199
  26. Needleman, H. (2004), "Lead poisoning", Annu. Rev. Med., 55, 209-222. https://doi.org/10.1146/annurev.med.55.091902.103653.
  27. Odde, D.J., Ma, L., Briggs, A.H., DeMarco, A. and Kirschner, M.W. (1999), "Microtubule bending and breaking in living fibroblast cells", J. Cell Sci., 112(19), 3283-3288. https://doi.org/10.1126/science.aai8764.
  28. Pampaloni, F., Lattanzi, G., Jonas, A., Surrey, T., Frey, E. and Florin, E.L. (2006), "Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length", Proc. Nat. Acad. Sci., 103(27), 10248-10253. https://doi.org/10.1073/pnas.0603931103.
  29. Rieder, C. and Bajer, A.S. (1977), "Heat-induced reversible hexagonal packing of spindle microtubules", J. Cell Biol., 74(3), 717-725. https://doi.org/10.1083/jcb.74.3.717.
  30. Safeer, M., Taj, M. and Abbas, S.S. (2019), "Effect of viscoelastic medium on wave propagation along protein microtubules", AIP Adv., 9(4), 045108. https://doi.org/10.1063/1.5086216.
  31. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., 9(1), 43-54. http://dx.doi.org/10.12989/acc.2020.9.1.043.
  32. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  33. Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
  34. Taj, M.S.M. (2019), "Vibrational analysis of microtubules embedded within viscoelastic medium using orthotropic Kelvin like model", Sains Malaysiana, 48(12), 2841-2847. https://doi.org/10.17576/jsm-2019-4812-25.
  35. Telmer, C.A., Newcomb, W. and Simmonds, D.H. (1995), "Cellular changes during heat shock induction and embryo development of cultured microspores ofBrassica napus cv. Topas", Protoplasma, 185(1-2), 106-112. https://doi.org/10.1007/BF01272758.
  36. Wiegant, F.A., en Henegouwen, P.M.V.B., Van Dongen, G. and Linnemans, W.A. (1987), "Stress-induced thermotolerance of the cytoskeleton of mouse neuroblastoma N2A cells and rat Reuber H35 hepatoma cells", Cancer Res., 47(6), 1674-1680. https://doi.org/10.1128/mcb.9.3.1298.
  37. Yang, X., Schadt, E.E., Wang, S., Wang, H., Arnold, A.P., Ingram-Drake, L., ... & Lusis, A.J. (2006), "Tissue-specific expression and regulation of sexually dimorphic genes in mice", Genome Res., 16(8), 995-1004. https://doi.org/10.1101/gr.5217506.
  38. Zhao, J.P., Simmonds, D.H. and Newcomb, W. (1996), "Induction of embryogenesis with colchicine instead of heat in microspores of Brassica napus L. cv. Topas", Planta, 198(3), 433-439. https://doi.org/10.1007/BF00620060.