DOI QR코드

DOI QR Code

Tribological behavior of concrete with different mineral additions

  • Belaidi, Amina (Department of Civil Engineering, Laboratory EOLE, University of Tlemcen) ;
  • Hacene, Mohammed Amine Boukli (Department of Civil Engineering, Laboratory EOLE, University of Tlemcen) ;
  • Kadri, El-Hadj (Department of Civil Engineering, Laboratory L2MGC, University of Cergy-Pontoise) ;
  • Taleb, Omar (Department of Civil Engineering, Laboratory EOLE, University of Tlemcen)
  • Received : 2019.03.12
  • Accepted : 2021.02.14
  • Published : 2021.03.25

Abstract

The present work aims at investigating the effects of using various fine mineral additions as partial replacement to Portland cement on the tribological properties of concrete. To achieve this goal, concrete mixtures were prepared with different percentages (10, 20 and 30%) of limestone fillers (LF) and natural pozzolana (NP), and (20, 40 and 60%) of blast furnace slag (BFS). The interface yield stress (τ0) and viscous constants (η) that allow characterizing friction at the concrete-pipe wall interface were determined using a rotational tribometer. In addition, the compositions of the boundary layers that formed in the pumping pipes of the different concretes under study were also identified and analyzed. The experimental results obtained showed that the concretes studied have a linear tribological behavior that can be described by the Bingham model. Furthermore, the use of different mineral additions, especially limestone fillers and blast furnace slags, even at high rates, had a beneficial effect on the optimization of the volume of paste present in the boundary layer, which made it possible to significantly reduce the viscous constant of concrete. However, a maximum rate of 10% of natural pozzolana was recommended to achieve tribological properties that are favorable to the pumpability of concrete.

Keywords

References

  1. Adjoudj, M., Ezziane, K., Kadri, E.H., Ngo, T.T. and Kaci, A. (2014), "Evaluation of rheological parameters of mortar containing various amounts of mineral addition with polycarboxylate superplasticizer", Constr. Build. Mater., 70, 549-559. https://doi.org/10.1016/j.conbuildmat.2014.07.111.
  2. Ahari, R.S., Erdem, T.K. and Ramyar, K. (2015), "Thixotropy and structural breakdown properties of self- consolidating concrete containing various supplementary cementitious materials", Cement Concrete Compos., 59, 26-37. https://doi.org/10.1016/j.cemconcomp.2015.03.009.
  3. Bauchkar, S.D. and Chore, H.S. (2017), "Experimental studies on rheological properties of smart dynamic concrete", Adv. Concrete Constr., 5(3), 183-199. http://dx.doi.org/10.12989/acc.2017.5.3.183.
  4. Boukli hacene, S.M.A. (2010), "Contribution a l'etude de la resistance caracteristique des betons de la region de Tlemcen", Ph.D. Dissertation, University of Tlemcen, Algeria.
  5. Chapdelaine, F. (2007), "Etude fondamentale et pratique sur le pompage du beton", Ph.D. Dissertation, University of Laval, Laval, Canada.
  6. Choi, M.S., Kim, Y.J., Jang, K.P. and Kwon, S.H. (2014), "Effect of the coarse aggregate size on pipe flow of pumped concrete", Constr. Build. Mater., 66, 723-730. https://doi.org/10.1016/j.conbuildmat.2014.06.027.
  7. Choi, M.S., Roussel, N., Kim, Y.J. and Kim, J. (2013), "Lubrification layer properties during concrete pumping", Cement Concrete Res., 45, 69-78. https://doi.org/10.1016/j.cemconres.2012.11.001.
  8. Chouinard, B. (1999), "Etude des relations entre la rheologie du beton et sa pompabilite", Ph.D. Dissertation, University of Laval, Canada.
  9. Diederich, P., Mouret, M. and Ponchon, F. (2010). "Design of self-compacting concrete according to the nature of the limestone filler", 6th International RILEM Symposium on SCC: Design, Production and placement of SCC, Montreal, Canada.
  10. El Hilali, A. (2009), "Etude experimentale de la rheologie et du comportement des betons autoplacants (BAP) : influence des fines calcaires et des fibres vegetales", Ph.D. Dissertation, University of Cergy Pontoise, France.
  11. Feys, D., Khayat, K.H., Perez-Schell, A. and Khatib, R. (2014), "Development of a tribometer to characterize lubrication layer properties of self-consolidating concrete", Cement Concrete Res., 54, 40-52. https://doi.org/10.1016/j.cemconcomp.2014.05.008.
  12. Haddadoua, N., Chaid, R. and Ghernouti, Y. (2015), "Experimental study on steel fibre reinforced self- compacting concrete incorporating high volume of marble powder", Eur. J. Envir. Civil Eng., 19(1), 48-64. https://doi.org/10.1080/19648189.2014.929537.
  13. Higgins, D. (2010), "Fifty-year experience of using GGBS in UK", Proceedings of the International Rilem Conference on Material Science (MATSCI '10), Aachen, Germany, December.
  14. Jeong, J.H., Jang, K.P., Park, C.K., Lee, S.H. and Kwon, S.H. (2016), "Effect of admixtures on pumpability for high-strength concrete", ACI Mater. J., 113, 323-333. https://doi.org/10.14359/5168864.
  15. Kaplan, D. (2000), "Pompage des betons", Ph.D. Dissertation, Ecole Central des Ponts et Chaussees, France.
  16. Kaplan, D., De Larrard, F. and Sedran, T. (2005), "Design of concrete pumping circuit", ACI Mater. J., 102(2), 110-117.
  17. Khatib, R. (2013), "Analysis and prediction of pumping characteristics of high strength self-consolidating concrete", Ph.D. Dissertation, University of Sherbrooke, Canada.
  18. Khayat, K.H. (1999), "Workability, testing, and performance of self-consolidating concrete", ACI Mater. J., 96, 346-353.
  19. Krachai, R.M., Bouabdallah, M.A., Abdelhadi, H. and Hamou, K. (2009), "Influence of beni-saf pozzolana on the mechanical performance of self-compacting concrete", 1st International Conference on Sustainable Built Environment Infrastructures in Developing Countries, Oran, Algeria, October.
  20. Kwon, S.H., Park, C.K., Jeong, J.H., Jo, S.D. and Lee, S.H. (2013), "Prediction of Concrete Pumping-Part I: Development of New Tribometer for Analysis of Lubricating Layer", ACI Mater. J., 110(6), 647-655.
  21. Kyong, P.J., Woo, J.K., Myoung, S.C. and Seung, H.K. (2018), "A new method to estimate rheological properties of lubricating layer for prediction of concrete pumping", Adv. Concrete Constr., 6(5), 465-483. http://dx.doi.org/10.12989/acc.2018.6.5.465.
  22. Le, H.D., Kadri, E.H., Aggoun, S., Vierendeels, J., Troch, P. and De Schutter, G. (2015), "Effect of lubrication layer on velocity profile of concrete in a pumping pipe", Mater. Struct., 48, 3991-4003. https://doi.org/10.1617/s11527-014-0458-5.
  23. Li, H., Sun D., Wang, Z., Huang, F., Yi, Z., Yang, Z. and Zhang, Y. (2020), "A review on the pumping behavior of modern concrete", J. Adv. Concrete Technol., 18, 352-363. https://doi.org/10.3151/jact.18.352.
  24. Mai, C.T., Kadri, E.H., Ngo, T.T., Kaci, A. and Riche, M. (2014), "Estimation of the pumping pressure from concrete composition based on the identified tribological parameters", Adv. Mater. Sci. Eng., 1-18. https://doi.org/10.1155/2014/503850.
  25. Ngo, T., Kadri, E., Cussigh, F. and Bennacer, R. (2012). "Relationships between concrete composition and boundary layer composition to optimise concrete pumpability", Eur. J. Envir. Civil Eng., 16(2), 697-708. https://doi.org/10.1080/19648189.2012.666910.
  26. Ngo, T., Kadri, E., Cussigh, F., Bennacer, R. and Duval, R. (2010b). "Practical tribometer to estimate pumpability of fresh concrete", J. Asian Arch. Build. Eng., 9, 229-236. https://doi.org/10.3130/jaabe.9.229.
  27. Ngo, T.T., Kadri, E.H., Bennacer, R. and Cussigh, F. (2010a), "Use of tribometer to estimate interface friction and concrete boundary layer composition during the fluid concrete pumping", Constr. Build. Mater., 24, 1253-1261. https://doi.org/10.1016/j.conbuildmat.2009.12.010.
  28. Ozawa, K., Sakata, N. and Okamura, H. (1995), "Evaluation of self-compactability of fresh concrete using the funnel test", Proceedings of the Japan Society of Civil Engineers, Japan, June.
  29. Park, C.K., Noh, M.H. and Park, T.H. (2005), "Rheological properties of cementitious materials containing mineral admixtures", Cement Concrete Res., 35(5), 842-849. https://doi.org/10.1016/j.cemconres.2004.11.002.
  30. Safiddine, S., Debieb, F., Kadri, E.H., Menadi, B., Cussigh, F. and Soualhi, H. (2017), "Effect of crushed sand and limestone crushed sand dust on the rheology of cement mortar", Appl. Rheol., 27(1), 14490. https://doi.org/10.3933/applrheol-27-14490.
  31. Secrieru, E., Fataei, S. and Mechtcherine, V. (2020), "Assessment and prediction of concrete flow and pumping pressure in pipeline", Cement Concrete Compos., 107, 103495. https://doi.org/10.1016/j.cemconcomp.2019.103495.
  32. Taleb, O., Ghomari, F., Boukli Hacene, M.A., Henaoui, M. and Soualhi, H. (2021), "Experimental and numerical analysis of the rheology of self-compacting concrete using a vane rheometer", Jordan J. Civil Eng., 15(1), 116-132.
  33. Taleb, O., Ghomari, F., Boukli Hacene, M.A., Kadri, E.H. and Soualhi, H. (2017), "Formulation and rheology of eco-selfcompacting concrete (Eco-SCC)", J. Adhes. Sci. Technol., 31(3), 272-296. https://doi.org/10.1080/01694243.2016.1215010.
  34. Wen-qiang, Z., Wen, X., Qian, T., Qian-qian, Z., Peng-gang, W. and Wei, L. (2016), "Design and properties of low-binder self-compacting concrete", Washington DC, May.
  35. Xiong, Z. and Jihong, H. (2000), "The effect of ultra-fine admixture on the rheological property of cement paste", Cement Concrete Res., 30, 827-830. https://doi.org/10.1016/S0008-8846(00)00236-2.
  36. Yim, H.J., Kim, J.H. and Kwon, S.H. (2016), "Effect of admixtures on the yield stresses of cement pastes under high hydrostatic pressures", Mater. (Basel), 9(3), 147. https://doi.org/10.3390/ma9030147.