References
- Ahmad, S., Umar, A., Masood, A. and Nayeem, M. (2019), "Performance of self-compacting concrete at room and after elevated temperature incorporating Silica fume", Adv. Concrete Constr., 7(1), 31. http://dx.doi.org/10.12989/acc.2019.7.1.031.
- Bai, X., Ding, H., Lian, J., Ma, D., Yang, X., Sun, N., Xue, W. and Chang, Y. (2018), "Coal production in China: Past, present, and future projections", Int. Geol. Rev., 60(5-6), 535-547. https://doi.org/10.1080/00206814.2017.1301226.
- Berriel, S.S., Favier, A., Dominguez, E.R., Machado, I.S., Heierli, U., Scrivener, K., Hernández, F.M. and Habert, G. (2016), "Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba", J. Clean. Prod., 124, 361-369. https://doi.org/10.1016/j.jclepro.2016.02.125.
- Criado, M., Jimenez, A.F. and Palomo, A. (2010), "Effect of sodium sulfate on the alkali activation of fly ash", Cement Concr. Compos., 32(8), 589-594. https://doi.org/10.1016/j.cemconcomp.2010.05.002.
- Dakhane, A., Tweedley, S., Kailas, S., Marzke, R. and Neithalath, N. (2017), "Mechanical and microstructural characterization of alkali sulfate activated high volume fly ash binders", Mater. Des., 122, 236-246. https://doi.org/10.1016/j.matdes.2017.03.021.
- Deschner, F., Winnefeld, F., Lothenbach, B., Seufert, S., Schwesig, P., Dittrich, S., Goetz-Neunhoeffer, F. and Neubauer, J. (2012), "Hydration of Portland cement with high replacement by siliceous fly ash", Cement Concrete Res., 42(10), 1389-1400. https://doi.org/10.1016/j.cemconres.2012.06.009.
- Du Toit, G., van der Merwe, E., Kearsley, E.P., McDonald, M. and Kruger, R.A. (2015), "Compressive strength of chemically and mechanically activated aluminosilicate systems", World of Coal Ash Conference, Nasvhille, TN.
- General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ), Standardization Administration (SA) of the People's Republic of China (1996) Method for chemical analysis of cement (GB/T 176-1996 eqv ISO 680:1990). Beijing, China.
- Golewski, G.L. (2018), "Green concrete composite incorporating fly ash with high strength and fracture toughness", J. Clean. Prod., 172, 218-226. https://doi.org/10.1016/j.jclepro.2017.10.065.
- Hamdy, G.A., El-Hariri, M.O. and Farag, M.F. (2019), "Use of additives in mortar to enhance the compression and bond strength of masonry exposed to different environmental conditions", J. Build. Eng., 25, 100765. https://doi.org/10.1016/j.jobe.2019.100765.
- Hanehara, S., Tomosawa, F., Kobayakawa, M. and Hwang, K. (2001), "Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste", Cement Concrete Res., 31, 31-39. https://doi.org/10.1016/S0008-8846(00)00441-5.
- He, Z., Yang, Y., Yuan, Q., Shi, J., Liu, B., Liang, C. and Du, S. (2021), "Recycling hazardous water treatment sludge in cement-based construction materials: Mechanical properties, drying shrinkage, and nano-scale characteristics", J. Clean. Prod., 290, 125832. https://doi.org/10.1016/j.jclepro.2021.125832.
- Indian Bureau of Mines (2018), Indian Minerals Yearbook 2017, Part III: Mineral Reviews, Govt. of India, Nagpur.
- Joseph, S., Snellings, R. and Cizer, O. (2019), "Activation of Portland cement blended with high volume of fly ash using Na2SO4", Cement Concrete Compos., 104, 103417. https://doi.org/10.1016/j.cemconcomp.2019.103417.
- Kumar, V.P. and Prasad, D.R. (2019), "Influence of supplementary cementitious materials on strength and durability characteristics of concrete", Adv. Concrete Constr., 7(2), 75. https://doi.org/10.12989/acc.2019.7.2.075.
- Lam, L., Wong, Y. L. and Poon, C. S. (2000), "Degree of hydration and gel/space ratio of high-volume fly ash/cement systems", Cement Concrete Res., 30(5), 747-756. https://doi.org/10.1016/S0008-8846(00)00213-1.
- Liang, C., Pan, B., Ma, Z., He, Z. and Duan, Z. (2019), "Utilization of CO2 curing to enhance the properties of recycled aggregate and prepared concrete: A review", Cement Concrete Compos., 105, 103446. https://doi.org/10.1016/j.cemconcomp.2019.103446.
- Liu, B., Qin, J., Shi, J., Jiang, J., Wu, X. and He, Z. (2021), "New perspectives on utilization of CO2 sequestration technologies in cement-based materials", Constr. Build. Mater., 272, 121660. https://doi.org/10.1016/j.conbuildmat.2020.121660.
- Liu, B., Shi, J., Liang, H., Jiang, J., Yang, Y. and He Z. (2020b), "Synergistic enhancement of mechanical property of the high replacement low-calcium ultrafine fly ash blended cement paste by multiple chemical activators", J. Build. Eng., 32, 101520. https://doi.org/10.1016/j.jobe.2020.101520.
- Liu, B., Shi, J., Zhou, F., Shen, S., Ding, Y. and Qin, J. (2020a), "Effects of steam curing regimes on the capillary water absorption of concrete: Prediction using multivariable regression models", Constr. Build. Mater., 256, 119426. https://doi.org/10.1016/j.conbuildmat.2020.119426.
- Liu, B., Xie, Y. and Li, J. (2005), "Influence of steam curing on the compressive strength of concrete containing supplementary cementing materials", Cement Concrete Res., 35(5), 994-998. https://doi.org/10.1016/j.cemconres.2004.05.044.
- Liu, B., Xie, Y., Zhou, S. and Li, J. (2001), "Some factors affecting early compressive strength of steam-curing concrete with ultrafine fly ash", Cement Concrete Res., 31(10), 1455-1458. https://doi.org/10.1016/S0008-8846(01)00559-2.
- Loderio, I.G., Jimenez, A.F. and Palomo, A. (2013a), "Variation in hybrid cements over time. Alkaline activation of fly ash Portland cement blends", Cement Concrete Res., 52, 112-122. https://doi.org/10.1016/j.cemconres.2013.03.022.
- Loderio, I.G., Jimenez, A.F. and Palomo, A. (2013b), "Hydration kinetics in hybrid binders: early reaction stages", Cement Concrete Compos., 39, 82-92. https://doi.org/10.1016/j.cemconcomp.2013.03.025.
- Lothenbach, B., Scrivener, K. and Hooton, R.D. (2011), "Supplementary cementitious materials", Cement Concrete Res., 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001.
- Poon, C., Kou, S., Lam, L. and Lin, Z. (2001), "Activation of fly ash/cement using calcium sulfate anhydrite (CaSO4)", Cement Concrete Res., 318, 73-881. https://doi.org/10.1016/S0008-8846(01)00478-1.
- Saluja, S., Goyal, S. and Bhattacharjee, B. (2019), "Strength and abrasion resistance of roller compacted concrete incorporating GGBS and two types of coarse aggregates", Adv. Concrete Constr., 8(2), 127-137. http://dx.doi.org/10.12989/acc.2019.8.2.127.
- Sant, G., Kumar, A., Patapy, C., Le Saout, G. and Scrivener, K. (2012), "The influence of sodium and potassium hydroxide on volume changes in cementitious materials", Cement Concrete Res., 42, 1447-1455. https://doi.org/10.1016/j.cemconres.2012.08.012.
- Scrivener, K., John, V.M. and Gartner, E.M. (2018), "Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry", Cement Concrete Res., 114, 2-26. https://doi.org/10.1016/j.cemconres.2018.03.015.
- Scrivener, K., Martirena, F., Bishnoi, S. and Maity, S. (2018), "Calcined clay limestone cements (LC3)", Cement Concrete Res., 114, 49-56. https://doi.org/10.1016/j.cemconres.2017.08.017.
- Sharath, S., Gayana, B.C., Reddy, K.R. and Chandar, K.R. (2019), "Experimental investigations on performance of concrete incorporating Precious Slag Balls (PS Balls) as fine aggregates", Adv. Concrete Constr., 8(3), 239-246. http://dx.doi.org/10.12989/acc.2019.8.3.239.
- Shehata, M.H. and Thomas, M.D.A. (2006), "Alkali release characteristics of blended cements", Cement Concrete Res., 36(6), 1166-1175. https://doi.org/10.1016/j.cemconres.2006.02.015.
- Shi, J., Liu, B., He, Z., Liu, Y., Jiang, J., Xiong, T. and Shi, J. (2021b), "A green ultra-lightweight chemically foamed concrete for building exterior: A feasibility study", J. Clean. Prod., 288, 125085. https://doi.org/10.1016/j.jclepro.2020.125085.
- Shi, J., Liu, B., Qin, J., Jiang, J., Wu, X. and Tan, J. (2020d), "Experimental study of performance of repair mortar: Evaluation of in-situ tests and correlation analysis", J. Build. Eng., 31, 101325. https://doi.org/10.1016/j.jobe.2020.101325.
- Shi, J., Liu, B., Shen, S., Tan, J., Dai, J. and Ji, R. (2020b), "Effect of curing regime on long-term mechanical strength and transport properties of steam-cured concrete", Constr. Build. Mater., 255, 119407. https://doi.org/10.1016/j.conbuildmat.2020.119407.
- Shi, J., Liu, B., Zhou, F., Shen, S., Dai, J., Ji, R. and Tan, J. (2020a), "Heat damage of concrete surfaces under steam curing and improvement measures", Constr. Build. Mater., 252, 119104. https://doi.org/10.1016/j.conbuildmat.2020.119104.
- Shi, J., Tan, J., Liu, B., Chen, J., Dai, J. and He, Z. (2021a), "Experimental study on full-volume slag alkali-activated mortars: Air-cooled blast furnace slag versus machine-made sand as fine aggregates", J. Hazard. Mater., 403, 123983. https://doi.org/10.1016/j.jhazmat.2020.123983.
- Smaoui, N., Berube, M.A., Fournier, B., Bissonnette, B. and Durand, B. (2005), "Effects of alkali addition on the mechanical properties and durability of concrete", Cement Concrete Res., 35, 203-212. https://doi.org/10.1016/j.cemconres.2004.05.007.
- Sunil, B.M., Manjunatha, L.S. and Yaragal, S.C. (2017), "Durability studies on concrete with partial replacement of cement and fine aggregates by fly ash and tailing material", Adv. Concrete Constr., 5(6), 671. http://dx.doi.org/10.12989/acc.2017.5.6.671.
- US Energy Information Administration (2018), www.eia.gov,https://www.eia.gov/todayinenergy/detail.php?id=34992.
- Wilinska, I. and Pacewska, B. (2018), "Influence of selected activating methods on hydration processes of mixtures containing high and very high amount of fly ash", J. Therm. Anal. Calorim., 133(1), 823-843. https://doi.org/10.1007/s10973-017-6915-y.
- Xu, G. and Shi, X. (2018), "Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review", Resour. Conserv. Recycl., 136, 95-109. https://doi.org/10.1016/j.resconrec.2018.04.010.
- Zhang, B., Tan, H., Shen, W., Xu, G., Ma, B. and Ji, X. (2018), "Nano-silica and silica fume modified cement mortar used as Surface Protection Material to enhance the impermeability", Cement Concrete Compos., 92, 7-17. https://doi.org/10.1016/j.cemconcomp.2018.05.012.
- Zhang, W., Zhang, Y. and Gao, L. (2019), "Effect of low-calcium fly ash on sulfate resistance of cement paste under different exposure conditions", Adv. Concrete Constr., 7(3), 175-181. http://dx.doi.org/10.12989/acc.2019.7.3.175.
- Zou, F., Hu, C., Wang, F., Ruan, Y. and Hu, S. (2020), "Enhancement of early-age strength of the high content fly ash blended cement paste by sodium sulfate and C-S-H seeds towards a greener binder", J. Clean. Prod., 244, 118566. https://doi.org/10.1016/j.jclepro.2019.118566.
- Zunino, F., Bentz, D.P. and Castro, J. (2018), "Reducing setting time of blended cement paste containing high-SO3 fly ash (HSFA) using chemical/physical accelerators and by fly ash pre-washing", Cement Concrete Res., 90, 14-26. https://doi.org/10.1016/j.cemconcomp.2018.03.018.