DOI QR코드

DOI QR Code

Effect of sulfate activators on mechanical property of high replacement low-calcium ultrafine fly ash blended cement paste

  • Liu, Baoju (School of Civil Engineering, Central South University) ;
  • Tan, Jinxia (School of Civil Engineering, Central South University) ;
  • Shi, Jinyan (School of Civil Engineering, Central South University) ;
  • Liang, Hui (School of Civil Engineering, Central South University) ;
  • Jiang, Junyi (School of Civil Engineering, Central South University) ;
  • Yang, Yuanxia (School of Civil Engineering, Central South University)
  • Received : 2020.02.26
  • Accepted : 2021.01.26
  • Published : 2021.03.25

Abstract

Due to economic and environmental benefits, increasing the substitution ratio of ordinary cement by industry by-products like fly ash (FA) is one of the best approaches to reduce the impact of the concrete industry on the environment. However, as the substitution rate of FA increases, it will have an adverse impact on the performance of cement-based materials, so the actual substitution rate of FA is limited to around 10-30%. Therefore, in order to increase the early-age strength of high replacement (30-70%) low-calcium ultrafine FA blended cement paste, sodium sulfate and calcium sulfate dihydrate were used to improve the reactivity of FA. The results show that sodium sulfate has a significant enhancement effect on the strength of the composite pastes in the early and late ages, while calcium sulfate dihydrate has only a slight effect in the late ages. The addition of sodium sulfate in the cement-FA blended system can enhance the gain rate of non-evaporation water, and can decrease the Ca(OH)2 content. In addition, when the sulfate chemical activators are added, the ettringite content increases, and the surface of the FA is dissolved and hydrated.

Keywords

References

  1. Ahmad, S., Umar, A., Masood, A. and Nayeem, M. (2019), "Performance of self-compacting concrete at room and after elevated temperature incorporating Silica fume", Adv. Concrete Constr., 7(1), 31. http://dx.doi.org/10.12989/acc.2019.7.1.031.
  2. Bai, X., Ding, H., Lian, J., Ma, D., Yang, X., Sun, N., Xue, W. and Chang, Y. (2018), "Coal production in China: Past, present, and future projections", Int. Geol. Rev., 60(5-6), 535-547. https://doi.org/10.1080/00206814.2017.1301226.
  3. Berriel, S.S., Favier, A., Dominguez, E.R., Machado, I.S., Heierli, U., Scrivener, K., Hernández, F.M. and Habert, G. (2016), "Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba", J. Clean. Prod., 124, 361-369. https://doi.org/10.1016/j.jclepro.2016.02.125.
  4. Criado, M., Jimenez, A.F. and Palomo, A. (2010), "Effect of sodium sulfate on the alkali activation of fly ash", Cement Concr. Compos., 32(8), 589-594. https://doi.org/10.1016/j.cemconcomp.2010.05.002.
  5. Dakhane, A., Tweedley, S., Kailas, S., Marzke, R. and Neithalath, N. (2017), "Mechanical and microstructural characterization of alkali sulfate activated high volume fly ash binders", Mater. Des., 122, 236-246. https://doi.org/10.1016/j.matdes.2017.03.021.
  6. Deschner, F., Winnefeld, F., Lothenbach, B., Seufert, S., Schwesig, P., Dittrich, S., Goetz-Neunhoeffer, F. and Neubauer, J. (2012), "Hydration of Portland cement with high replacement by siliceous fly ash", Cement Concrete Res., 42(10), 1389-1400. https://doi.org/10.1016/j.cemconres.2012.06.009.
  7. Du Toit, G., van der Merwe, E., Kearsley, E.P., McDonald, M. and Kruger, R.A. (2015), "Compressive strength of chemically and mechanically activated aluminosilicate systems", World of Coal Ash Conference, Nasvhille, TN.
  8. General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ), Standardization Administration (SA) of the People's Republic of China (1996) Method for chemical analysis of cement (GB/T 176-1996 eqv ISO 680:1990). Beijing, China.
  9. Golewski, G.L. (2018), "Green concrete composite incorporating fly ash with high strength and fracture toughness", J. Clean. Prod., 172, 218-226. https://doi.org/10.1016/j.jclepro.2017.10.065.
  10. Hamdy, G.A., El-Hariri, M.O. and Farag, M.F. (2019), "Use of additives in mortar to enhance the compression and bond strength of masonry exposed to different environmental conditions", J. Build. Eng., 25, 100765. https://doi.org/10.1016/j.jobe.2019.100765.
  11. Hanehara, S., Tomosawa, F., Kobayakawa, M. and Hwang, K. (2001), "Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste", Cement Concrete Res., 31, 31-39. https://doi.org/10.1016/S0008-8846(00)00441-5.
  12. He, Z., Yang, Y., Yuan, Q., Shi, J., Liu, B., Liang, C. and Du, S. (2021), "Recycling hazardous water treatment sludge in cement-based construction materials: Mechanical properties, drying shrinkage, and nano-scale characteristics", J. Clean. Prod., 290, 125832. https://doi.org/10.1016/j.jclepro.2021.125832.
  13. Indian Bureau of Mines (2018), Indian Minerals Yearbook 2017, Part III: Mineral Reviews, Govt. of India, Nagpur.
  14. Joseph, S., Snellings, R. and Cizer, O. (2019), "Activation of Portland cement blended with high volume of fly ash using Na2SO4", Cement Concrete Compos., 104, 103417. https://doi.org/10.1016/j.cemconcomp.2019.103417.
  15. Kumar, V.P. and Prasad, D.R. (2019), "Influence of supplementary cementitious materials on strength and durability characteristics of concrete", Adv. Concrete Constr., 7(2), 75. https://doi.org/10.12989/acc.2019.7.2.075.
  16. Lam, L., Wong, Y. L. and Poon, C. S. (2000), "Degree of hydration and gel/space ratio of high-volume fly ash/cement systems", Cement Concrete Res., 30(5), 747-756. https://doi.org/10.1016/S0008-8846(00)00213-1.
  17. Liang, C., Pan, B., Ma, Z., He, Z. and Duan, Z. (2019), "Utilization of CO2 curing to enhance the properties of recycled aggregate and prepared concrete: A review", Cement Concrete Compos., 105, 103446. https://doi.org/10.1016/j.cemconcomp.2019.103446.
  18. Liu, B., Qin, J., Shi, J., Jiang, J., Wu, X. and He, Z. (2021), "New perspectives on utilization of CO2 sequestration technologies in cement-based materials", Constr. Build. Mater., 272, 121660. https://doi.org/10.1016/j.conbuildmat.2020.121660.
  19. Liu, B., Shi, J., Liang, H., Jiang, J., Yang, Y. and He Z. (2020b), "Synergistic enhancement of mechanical property of the high replacement low-calcium ultrafine fly ash blended cement paste by multiple chemical activators", J. Build. Eng., 32, 101520. https://doi.org/10.1016/j.jobe.2020.101520.
  20. Liu, B., Shi, J., Zhou, F., Shen, S., Ding, Y. and Qin, J. (2020a), "Effects of steam curing regimes on the capillary water absorption of concrete: Prediction using multivariable regression models", Constr. Build. Mater., 256, 119426. https://doi.org/10.1016/j.conbuildmat.2020.119426.
  21. Liu, B., Xie, Y. and Li, J. (2005), "Influence of steam curing on the compressive strength of concrete containing supplementary cementing materials", Cement Concrete Res., 35(5), 994-998. https://doi.org/10.1016/j.cemconres.2004.05.044.
  22. Liu, B., Xie, Y., Zhou, S. and Li, J. (2001), "Some factors affecting early compressive strength of steam-curing concrete with ultrafine fly ash", Cement Concrete Res., 31(10), 1455-1458. https://doi.org/10.1016/S0008-8846(01)00559-2.
  23. Loderio, I.G., Jimenez, A.F. and Palomo, A. (2013a), "Variation in hybrid cements over time. Alkaline activation of fly ash Portland cement blends", Cement Concrete Res., 52, 112-122. https://doi.org/10.1016/j.cemconres.2013.03.022.
  24. Loderio, I.G., Jimenez, A.F. and Palomo, A. (2013b), "Hydration kinetics in hybrid binders: early reaction stages", Cement Concrete Compos., 39, 82-92. https://doi.org/10.1016/j.cemconcomp.2013.03.025.
  25. Lothenbach, B., Scrivener, K. and Hooton, R.D. (2011), "Supplementary cementitious materials", Cement Concrete Res., 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001.
  26. Poon, C., Kou, S., Lam, L. and Lin, Z. (2001), "Activation of fly ash/cement using calcium sulfate anhydrite (CaSO4)", Cement Concrete Res., 318, 73-881. https://doi.org/10.1016/S0008-8846(01)00478-1.
  27. Saluja, S., Goyal, S. and Bhattacharjee, B. (2019), "Strength and abrasion resistance of roller compacted concrete incorporating GGBS and two types of coarse aggregates", Adv. Concrete Constr., 8(2), 127-137. http://dx.doi.org/10.12989/acc.2019.8.2.127.
  28. Sant, G., Kumar, A., Patapy, C., Le Saout, G. and Scrivener, K. (2012), "The influence of sodium and potassium hydroxide on volume changes in cementitious materials", Cement Concrete Res., 42, 1447-1455. https://doi.org/10.1016/j.cemconres.2012.08.012.
  29. Scrivener, K., John, V.M. and Gartner, E.M. (2018), "Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry", Cement Concrete Res., 114, 2-26. https://doi.org/10.1016/j.cemconres.2018.03.015.
  30. Scrivener, K., Martirena, F., Bishnoi, S. and Maity, S. (2018), "Calcined clay limestone cements (LC3)", Cement Concrete Res., 114, 49-56. https://doi.org/10.1016/j.cemconres.2017.08.017.
  31. Sharath, S., Gayana, B.C., Reddy, K.R. and Chandar, K.R. (2019), "Experimental investigations on performance of concrete incorporating Precious Slag Balls (PS Balls) as fine aggregates", Adv. Concrete Constr., 8(3), 239-246. http://dx.doi.org/10.12989/acc.2019.8.3.239.
  32. Shehata, M.H. and Thomas, M.D.A. (2006), "Alkali release characteristics of blended cements", Cement Concrete Res., 36(6), 1166-1175. https://doi.org/10.1016/j.cemconres.2006.02.015.
  33. Shi, J., Liu, B., He, Z., Liu, Y., Jiang, J., Xiong, T. and Shi, J. (2021b), "A green ultra-lightweight chemically foamed concrete for building exterior: A feasibility study", J. Clean. Prod., 288, 125085. https://doi.org/10.1016/j.jclepro.2020.125085.
  34. Shi, J., Liu, B., Qin, J., Jiang, J., Wu, X. and Tan, J. (2020d), "Experimental study of performance of repair mortar: Evaluation of in-situ tests and correlation analysis", J. Build. Eng., 31, 101325. https://doi.org/10.1016/j.jobe.2020.101325.
  35. Shi, J., Liu, B., Shen, S., Tan, J., Dai, J. and Ji, R. (2020b), "Effect of curing regime on long-term mechanical strength and transport properties of steam-cured concrete", Constr. Build. Mater., 255, 119407. https://doi.org/10.1016/j.conbuildmat.2020.119407.
  36. Shi, J., Liu, B., Zhou, F., Shen, S., Dai, J., Ji, R. and Tan, J. (2020a), "Heat damage of concrete surfaces under steam curing and improvement measures", Constr. Build. Mater., 252, 119104. https://doi.org/10.1016/j.conbuildmat.2020.119104.
  37. Shi, J., Tan, J., Liu, B., Chen, J., Dai, J. and He, Z. (2021a), "Experimental study on full-volume slag alkali-activated mortars: Air-cooled blast furnace slag versus machine-made sand as fine aggregates", J. Hazard. Mater., 403, 123983. https://doi.org/10.1016/j.jhazmat.2020.123983.
  38. Smaoui, N., Berube, M.A., Fournier, B., Bissonnette, B. and Durand, B. (2005), "Effects of alkali addition on the mechanical properties and durability of concrete", Cement Concrete Res., 35, 203-212. https://doi.org/10.1016/j.cemconres.2004.05.007.
  39. Sunil, B.M., Manjunatha, L.S. and Yaragal, S.C. (2017), "Durability studies on concrete with partial replacement of cement and fine aggregates by fly ash and tailing material", Adv. Concrete Constr., 5(6), 671. http://dx.doi.org/10.12989/acc.2017.5.6.671.
  40. US Energy Information Administration (2018), www.eia.gov,https://www.eia.gov/todayinenergy/detail.php?id=34992.
  41. Wilinska, I. and Pacewska, B. (2018), "Influence of selected activating methods on hydration processes of mixtures containing high and very high amount of fly ash", J. Therm. Anal. Calorim., 133(1), 823-843. https://doi.org/10.1007/s10973-017-6915-y.
  42. Xu, G. and Shi, X. (2018), "Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review", Resour. Conserv. Recycl., 136, 95-109. https://doi.org/10.1016/j.resconrec.2018.04.010.
  43. Zhang, B., Tan, H., Shen, W., Xu, G., Ma, B. and Ji, X. (2018), "Nano-silica and silica fume modified cement mortar used as Surface Protection Material to enhance the impermeability", Cement Concrete Compos., 92, 7-17. https://doi.org/10.1016/j.cemconcomp.2018.05.012.
  44. Zhang, W., Zhang, Y. and Gao, L. (2019), "Effect of low-calcium fly ash on sulfate resistance of cement paste under different exposure conditions", Adv. Concrete Constr., 7(3), 175-181. http://dx.doi.org/10.12989/acc.2019.7.3.175.
  45. Zou, F., Hu, C., Wang, F., Ruan, Y. and Hu, S. (2020), "Enhancement of early-age strength of the high content fly ash blended cement paste by sodium sulfate and C-S-H seeds towards a greener binder", J. Clean. Prod., 244, 118566. https://doi.org/10.1016/j.jclepro.2019.118566.
  46. Zunino, F., Bentz, D.P. and Castro, J. (2018), "Reducing setting time of blended cement paste containing high-SO3 fly ash (HSFA) using chemical/physical accelerators and by fly ash pre-washing", Cement Concrete Res., 90, 14-26. https://doi.org/10.1016/j.cemconcomp.2018.03.018.