DOI QR코드

DOI QR Code

Microstructure and mechanical behavior of cementitious composites with multi-scale additives

  • Irshidat, Mohammad R. (Center for Advanced Materials (CAM), Qatar University) ;
  • Al-Nuaimi, Nasser (Center for Advanced Materials (CAM), Qatar University) ;
  • Rabie, Mohamed (Center for Advanced Materials (CAM), Qatar University)
  • 투고 : 2020.10.05
  • 심사 : 2021.01.14
  • 발행 : 2021.02.25

초록

This paper studies the effect of using multi-scale reinforcement additives on mechanical strengths, damage performance, microstructure, and water absorption of cementitious composites. Small dosages of carbon nanotubes (CNTs) or polypropylene (PP) microfibers; 0.05%, 0.1%, and 0.2% by weight of cement; were added either separately or simultaneously into cement mortar. The experimental results show the ability of these additives to enhance the mechanical behavior of the mortar. The best improvement in compressive and flexural strengths of cement mortar reaches 28% in the case of adding a combination of 0.1% CNTs and 0.2% PP fibers for compression, and a combination of 0.2% CNTs and 0.2% PP fibers for flexure. Adding CNTs does not change the brittle mode of failure of plain mortar whereas the presence of PP fibers changes it into ductile failure and clearly enhances the fracture energy of the specimens. Scanning electron microscopic (SEM) images of the fracture surfaces highlights the role of CNTs in improving the adhesion between the PP fibers and the hydration products and thus enhance the ability of the fibers to mitigate cracks propagation and to enhance the mechanical performance of the mortar.

키워드

참고문헌

  1. Ahmed, H., Bogas, J.A., Guedes, M. and Pereira, M.F.C. (2018), "Dispersion and reinforcement efficiency of carbon nanotubes in cementitious composites", Mag. Concrete Res., 71(8), 408-423. https://doi.org/10.1680/jmacr.17.00562.
  2. Archontas, N.D. and Pantazopoulou, S.J. (2015), "Microstructural behavior and mechanics of nano-modified cementitious materials", Adv. Concrete Constr., 3(1), 14. http://dx.doi.org/10.12989/.2015.3.1.014.
  3. Bani-Hani, K.A., Irshidat, M.R., Al-Rub, R.K.A., Al-Nuaimi, N.A. and Talleh, A.T. (2015), "Strength optimisation of mortar with CNTs and nanoclays", Proc. Inst. Civil Eng.-Struct. Build., 169(5), 340-356. https://doi.org/10.1680/jstbu.14.00106.
  4. Banthia, N., Majdzadeh, F., Wu, J. and Bindiganavile, V. (2014), "Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear", Cement Concrete Compos., 48, 91-97. https://doi.org/10.1016/j.cemconcomp.2013.10.018.
  5. C01 Committee (n.d.), Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International.
  6. Ezziane, M., Kadri, T., Molez, L., Jauberthie, R. and Belhacen, A. (2015), "High temperature behaviour of polypropylene fibres reinforced mortars", Fire Saf. J., 71, 324-331. https://doi.org/10.1016/j.firesaf.2014.11.022.
  7. Flores Medina, N., Barluenga, G. and Hernandez-Olivares, F. (2014), "Enhancement of durability of concrete composites containing natural pozzolans blended cement through the use of Polypropylene fibers", Compos. Part B: Eng., 61, 214-221. https://doi.org/10.1016/j.compositesb.2014.01.052.
  8. Gupta, S., Kua, H.W. and Pang, S.D. (2017), "Combination of polypropylene fibre and superabsorbent polymer to improve physical properties of cement mortar", Mag. Concrete Res., 70(7), 350-364. https://doi.org/10.1680/jmacr.17.00193.
  9. Irshidat, M.R. and Al-Saleh, M.H. (2018a), "Thermal performance and fire resistance of nanoclay modified cementitious materials", Constr. Build. Mater., 159, 213-219. https://doi.org/10.1016/j.conbuildmat.2017.10.127.
  10. Irshidat, M.R. and Al-Saleh, M.H. (2018b), "Influence of nanoclay on the properties and morphology of cement mortar", KSCE J. Civil Eng., 22(10), 4056-4063. https://doi.org/10.1007/s12205-018-1642-x.
  11. Irshidat, M.R., Al-Saleh, M.H. and Sanad, S. (2015), "Effect of nanoclay on expansive potential of cement mortar due to alkali-silica reaction", Mater. J., 112(6), 801-808.
  12. Irshidat, M.R. and Al-Shannaq, A. (2018a), "Using textile reinforced mortar modified with carbon nano tubes to improve flexural performance of RC beams", Compos. Struct., 200, 127-134. https://doi.org/10.1016/j.compstruct.2018.05.088.
  13. Irshidat, M.R. and Al-Shannaq, A. (2018b), "Using textile reinforced mortar modified with carbon nano tubes to improve flexural performance of RC beams", Compos. Struct., 200, 127-134. https://doi.org/10.1016/j.compstruct.2018.05.088.
  14. Lawler, J. S., Zampini, D. and Shah, S.P. (2005), "Microfiber and macrofiber hybrid fiber-reinforced concrete", J. Mater. Civil Eng., 17(5), 595-604. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(595).
  15. Li, L.G., Chu, S.H., Zeng, K.L., Zhu, J. and Kwan, A.K.H. (2018), "Roles of water film thickness and fibre factor in workability of polypropylene fibre reinforced mortar", Cement Concrete Compos., 93, 196-204. https://doi.org/10.1016/j.cemconcomp.2018.07.014.
  16. Liang, N., Dai, J., Liu, X. and Zhong, Z. (2018), "Experimental study on the fracture toughness of concrete reinforced with multi-size polypropylene fibres", Mag. Concrete Res., 71(9), 468-475. https://doi.org/10.1680/jmacr.17.00474.
  17. Mohseni, E., Khotbehsara, M.M., Naseri, F., Monazami, M. and Sarker, P. (2016), "Polypropylene fiber reinforced cement mortars containing rice husk ash and nano-alumina", Constr. Build. Mater., 111, 429-439. https://doi.org/10.1016/j.conbuildmat.2016.02.124.
  18. Murthy, A.R. and Ganesh, P. (2019), "Effect of steel fibres and nano silica on fracture properties of medium strength concrete", Adv. Concrete Constr., 7(3), 143-150. https://doi.org/10.12989/acc.2019.7.3.143.
  19. Nuaklong, P., Chittanurak, J., Jongvivatsakul, P., Pansuk, W., Lenwari, A. and Likitlersuang, S. (2020), "Effect of hybrid polypropylene-steel fibres on strength characteristics of UHPFRC", Adv. Concrete Constr., 10(1), 1-11. https://doi.org/10.12989/acc.2020.10.1.001.
  20. Park, S.H., Kim, D.J., Ryu, G.S. and Koh, K.T. (2012), "Tensile behavior of ultra high performance hybrid fiber reinforced concrete", Cement Concrete Compos., 34(2), 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009.
  21. Qian, C.X. and Stroeven, P. (2000), "Development of hybrid polypropylene-steel fibre-reinforced concrete", Cement Concrete Res., 30(1), 63-69. https://doi.org/10.1016/S0008-8846(99)00202-1.
  22. Qin, Y., Zhang, X., Chai, J., Xu, Z. and Li, S. (2019a), "Experimental study of compressive behavior of polypropylene-fiber-reinforced and polypropylene-fiber-fabric-reinforced concrete", Constr. Build. Mater., 194, 216-225. https://doi.org/10.1016/j.conbuildmat.2018.11.042.
  23. Qin, Y., Zhang, X., Chai, J., Xu, Z. and Li, S. (2019b), "Experimental study of compressive behavior of polypropylene-fiber-reinforced and polypropylene-fiber-fabric-reinforced concrete", Constr. Build. Mater., 194, 216-225. https://doi.org/10.1016/j.conbuildmat.2018.11.042.
  24. Rashad, A.M. (2017), "Effect of carbon nanotubes (CNTs) on the properties of traditional cementitious materials", Constr. Build. Mater., 153, 81-101. https://doi.org/10.1016/j.conbuildmat.2017.07.089.
  25. Reddy, A.N. (2019), "An experimental study on effect of Colloidal Nano-Silica on tetranary blended concrete", Adv. Concrete Constr., 7(2), 107-115. http://dx.doi.org/10.12989/acc.2019.7.2.107.
  26. Sedaghatdoost, A. and Behfarnia, K. (2018), "Mechanical properties of Portland cement mortar containing multi-walled carbon nanotubes at elevated temperatures", Constr. Build. Mater., 176, 482-489. https://doi.org/10.1016/j.conbuildmat.2018.05.095.
  27. Sedaghatdoost, A., Behfarnia, K. and Bayati, M. (2019), "The effect of curing period on the residual strength of Portland cement mortar containing MWCNTs at elevated temperature", Constr. Build. Mater., 196, 144-153. https://doi.org/10.1016/j.conbuildmat.2018.11.119.
  28. Sharma, R. and Bansal, P.P. (2019), "Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete", Adv. Concrete Constr., 8(1), 21-31. https://doi.org/10.12989/acc.2019.8.1.021.
  29. Sikora, P., Abd Elrahman, M., Chung, S.Y., Cendrowski, K., Mijowska, E. and Stephan, D. (2019), "Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature", Cement Concrete Compos., 95, 193-204. https://doi.org/10.1016/j.cemconcomp.2018.11.006.
  30. Song, P.S., Hwang, S. and Sheu, B.C. (2005), "Strength properties of nylon- and polypropylene-fiber-reinforced concretes", Cement Concrete Res., 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033.
  31. Song, X., Zhang, J. and Shang, S. (2017), "Mechanical properties of early-age concrete reinforced with multi-walled carbon nanotubes", Mag. Concrete Res., 69(13), 683-693. https://doi.org/10.1680/jmacr.16.00424.
  32. Szelag, M. (2019), "Evaluation of cracking patterns of cement paste containing polypropylene fibers", Compos. Struct., 220, 402-411. https://doi.org/10.1016/j.compstruct.2019.04.038.
  33. Xu, S., Liu, J. and Li, Q. (2015), "Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste", Constr. Build. Mater., 76, 16-23. https://doi.org/10.1016/j.conbuildmat.2014.11.049.
  34. Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T. and Sivakugan, N. (2015), "Use of macro plastic fibres in concrete: A review", Constr. Build. Mater., 93, 180-188. https://doi.org/10.1016/j.conbuildmat.2015.05.105.
  35. Zhan, M., Pan, G., Zhou, F., Mi, R. and Shah, S.P. (2020), "In situ-grown carbon nanotubes enhanced cement-based materials with multifunctionality", Cement Concrete Compos., 108, 103518. https://doi.org/10.1016/j.cemconcomp.2020.103518.
  36. Zhang, H., Wang, L., Zheng, K., Bakura, T.J. and Totakhil, P.G. (2018), "Research on compressive impact dynamic behavior and constitutive model of polypropylene fiber reinforced concrete", Constr. Build. Mater., 187, 584-595. https://doi.org/10.1016/j.conbuildmat.2018.07.164.
  37. Zhang, L.W., Kai, M.F. and Liew, K.M. (2017), "Evaluation of microstructure and mechanical performance of CNT-reinforced cementitious composites at elevated temperatures", Compos. Part A: Appl. Sci. Manuf., 95, 286-293. https://doi.org/10.1016/j.compositesa.2017.02.001