DOI QR코드

DOI QR Code

Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymer

  • Abadel, Aref A. (Dept. of Civil Engineering, College of Engineering, King Saud University) ;
  • Albidah, Abdulrahman S. (Dept. of Civil Engineering, College of Engineering, King Saud University) ;
  • Altheeb, Ali H. (Dept. of Civil Engineering, College of Engineering, King Saud University) ;
  • Alrshoudi, Fahed A. (Dept. of Civil Engineering, College of Engineering, King Saud University) ;
  • Abbas, Husain (Dept. of Civil Engineering, College of Engineering, King Saud University) ;
  • Al-Salloum, Yousef A. (Dept. of Civil Engineering, College of Engineering, King Saud University)
  • 투고 : 2019.09.27
  • 심사 : 2020.12.30
  • 발행 : 2021.02.25

초록

In this study, twenty-five geopolymer (GP) mixes were prepared by varying the alkaline solids to Metakaolin (MK) and sodium silicate to NaOH ratios from 0.1 to 0.5 and 0.2 to 1.0, respectively, thus giving a wide range of molar ratios of silica to alumina, sodium oxide to alumina and water to sodium oxide. The compressive strength of these GP mixes was determined for four curing schemes involving oven curing at 100℃ for 24 h and three ambient curing with the curing ages of 3, 14, and 28 days. The test results revealed that for the manufacture of GP binder for structural applications of strength up to 90 MPa, the molar ratio of silica to alumina should be greater than 2.3, sodium oxide to alumina should be between 0.6 to 1.2, and water to sodium oxide should not exceed 12. The compressive strength of ambient cured GP mortar gets stabilized at 28 days of ambient curing. Experimental findings were also corroborated by GP microstructure analysis. The embodied energy of MK-based GP mortars, especially of high strength, is significantly less than the cement mortar of equivalent strength.

키워드

참고문헌

  1. Alanazi, H., Yang, M., Zhang, D. and Gao, Z. (2017), "Early strength and durability of metakaolin-based geopolymer concrete", Mag. Concrete Res., 69(1), 46-54. https://doi.org/10.1680/jmacr.16.00118.
  2. ASTM C230 (2014), Standard Specification for Flow Table for Use in Tests of Hydraulic Cement, ASTM International, West Conshohocken, PA, USA.
  3. Davidovits J. (2013), "Geopolymer cement-A review", Geopolym. Sci. Tech., 21, 1-11.
  4. Duxson, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A. and van Deventer, J.S. (2007a), "Geopolymer technology: The current state of the art", J. Mater. Sci., 42(9), 2917-2933. https://doi.org/10.1007/s10853-006-0637-z.
  5. Duxson, P., Provis, J.L., Lukey, G.C. and Van Deventer, J.S. (2007b), "The role of inorganic polymer technology in the development of 'Green concrete", Cement Concrete Res., 37(12), 1590-1597. https://doi.org/10.1016/j.cemconres.2007.08.018.
  6. Feng, J., Zhang, R., Gong, L., Li, Y., Cao, W. and Cheng, X. (2015), "Development of porous fly ash-based geopolymer with low thermal conductivity", Mater. Des., 65, 529-533. https://doi.org/10.1016/j.matdes.2014.09.024.
  7. Granizo, M.L., Blanco-Varela, M.T. and Martinez-Ramirez, S. (2007), "Alkali activation of me-takaolins: Parameters affecting mechanical, structural and microstructural properties", J. Mater. Sci., 42(9), 2934-2943. https://doi.org/10.1007/s10853-006-0565-y
  8. Jian, J., Liu, Z., Lai, L., Yang, H. and Huang, H., (2014), "Preparation conditions and hydration process of metakaolin geopolymer", J. Guilin Univ. Technol., 34(3), 544-548.
  9. Jindal, B.B. (2018), "Feasibility study of ambient cured geopolymer concrete-A review", Adv. Concrete Constr., 6(4), 387-405. http://dx.doi.org/10.12989/acc.2018.6.4.387.
  10. Jindal, B.B., Singhal, D., Sharma, S.K. and Ashish, D.K. (2017), "Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine", Adv. Concrete Constr., 5(1), 17-29. http://dx.doi.org/10.12989/acc.2017.19.2.017.
  11. Kamalloo, A., Ganjkhanlou, Y., Aboutalebi, S.H. and Noranian, H. (2010), "Modeling of compressive strength of metakaolin based geopolymers by the use of artificial neural network research note", Int. J. Eng.-Tran. A: Basic., 23(2), 145-152.
  12. Khale, D. and Chaudhary, R. (2007), "Mechanism of geopolymerization and factors influencing its development: A review", J. Mater. Sci., 42(3), 729-746. https://doi.org/10.1007/s10853-006-0401-4.
  13. Mehta, A. and Siddique, R. (2018), "Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties", J. Clean. Prod., 205, 49-57. https://doi.org/10.1016/j.jclepro.2018.08.313.
  14. Menzies, G.F., Turan, S. and Banfill, P.F. (2007), "Life-cycle assessment and embodied energy: A review", Proc. Inst. Civil Eng.-Constr. Mater., 160(4), 135-143. https://doi.org/10.1680/coma.2007.160.4.135.
  15. Mo, B.H., Zhu, H., Cui, X.M., He, Y. and Gong, S.Y. (2014), "Effect of curing temperature on geopolymerization of metakaolin-based geopolymers", Appl. Clay Sci., 99, 144-148. https://doi.org/10.1016/j.clay.2014.06.024.
  16. Mohseni, E. (2018), "Assessment of Na2SiO3 to NaOH ratio impact on the performance of polypropylene fiber-reinforced geopolymer composites", Constr. Build. Mater., 186, 904-911. https://doi.org/10.1016/j.conbuildmat.2018.08.032.
  17. Morsy, M.S., Al-Salloum, Y., Almusallam, T. and Abbas, H. (2014), "Effect of nano-metakaolin addition on the hydration characteristics of fly ash blended cement mortar", J. Therm. Anal. Calorim., 116(2), 845-852. https://doi.org/10.1007/s10973-013-3512-6.
  18. Morsy, M.S., Al-Salloum, Y.A., Almusallam, T.H. and Abbas, H. (2017), "Mechanical properties, phase composition and microstructure of activated metakaolin-slaked lime binder", KSCE J. Civil Eng., 21(3), 863-871. https://doi.org/10.1007/s12205-016-0667-2.
  19. Muniz-Villarreal, M.S., Manzano-Ramirez, A., Sampieri-Bulbarela, S., Gasca-Tirado, J.R., Reyes-Araiza, J.L., RubioAvalos, J.C. and Amigo-Borras, V. (2011), "The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer", Mater. Lett., 65(6), 995-998. https://doi.org/10.1016/j.matlet.2010.12.049.
  20. Narayanan, A. and Shanmugasundaram, P. (2017), "An experimental investigation on fly ash-based geopolymer mortar under different curing regime for thermal analysis", Energy Build., 138, 539-545. https://doi.org/10.1016/j.enbuild.2016.12.079.
  21. Pacheco-Torgal, F., Castro-Gomes, J. and Jalali, S. (2008a), "Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products", Constr. Build. Mater., 22(7), 1305-1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015.
  22. Pacheco-Torgal, F., Castro-Gomes, J. and Jalali, S. (2008b), "Alkali-activated binders: A review. Part 2. About materials and binders manufacture", Constr. Build. Mater., 22(7), 1315-1322. https://doi.org/10.1016/j.conbuildmat.2007.03.019.
  23. Panda, B., Paul, S.C., Hui, L.J., Tay, Y.W.D. and Tan, M.J. (2017), "Additive manufacturing of geopolymer for sustainable built environment", J. Clean. Prod., 167, 281-288. https://doi.org/10.1016/j.jclepro.2017.08.165.
  24. Patil, A.A., Chore, H.S. and Dodeb, P.A. (2014), "Effect of curing condition on strength of geopolymer concrete", Adv. Concrete Constr., 2(1), 29-37. http://dx.doi.org/10.12989/acc.2014.2.1.029.
  25. Perera, D.S., Uchida, O., Vance, E.R. and Finnie, K.S. (2007), "Influence of curing schedule on the integrity of geopolymers", J. Mater. Sci., 42(9), 3099-3106. https://doi.org/10.1007/s10853-006-0533-6.
  26. Pouhet, R. and Cyr, M. (2016), "Formulation and performance of flash metakaolin geopolymer concretes", Constr. Build. Mater., 120, 150-160. https://doi.org/10.1016/j.conbuildmat.2016.05.061.
  27. Rajamane, N.P., Nataraja, M.C., Lakshmanan, N., Dattatreya, J.K. and Sabitha, D. (2012), "Sulphuric acid resistant ecofriendly concrete from geopolymerisation of blast furnace slag", Indi. J. Eng. Mater. Sci., 19, 357-367. http://nopr.niscair.res.in/handle/123456789/15164.
  28. Rao, G.M. and Rao, T.D. (2017), "Effect of fly ash and GGBS combination on mechanical and durability properties of GPC", Adv. Concrete Constr., 5(4), 313-330. https://doi.org/10.12989/acc.2017.5.4.313.
  29. Reddy, B.V. and Jagadish, K.S. (2003), "Embodied energy of common and alternative building materials and technologies", Energy Build., 35(2), 129-137. https://doi.org/10.1016/S0378-7788(01)00141-4.
  30. Rovnanik, P. (2010), "Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer", Constr. Build. Mater., 24(7), 1176-1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023.
  31. Sagoe-Crentsil, K. and Weng, L. (2007), "Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems", J. Mater. Sci., 42(9), 3007-3014. https://doi.org/10.1007/s10853-006-0818-9.
  32. Sakulich, A.R. (2011), "Reinforced geopolymer composites for enhanced material greenness and durability", Sustain. Citi. Soc., 1(4), 195-210. https://doi.org/10.1016/j.scs.2011.07.009.
  33. Shaikh, F.U. (2014), "Effects of alkali solutions on corrosion durability of geopolymer concrete", Adv. Concrete Constr., 2(2), 109-123. http://dx.doi.org/10.12989/acc.2014.2.2.109.
  34. Soutsos, M., Boyle, A.P., Vinai, R., Hadjierakleous, A. and Barnett, S.J. (2016), "Factors influencing the compressive Strength of fly ash based geopolymers", Constr. Build. Mater., 110, 355-368. https://doi.org/10.1016/j.conbuildmat.2015.11.045.
  35. Tempest, B., Sanusi, O., Gergely, J., Ogunro, V. and Weggel, D. (2009), "Compressive strength and embodied energy optimization of fly ash based geopolymer concrete", World of Coal Ash (WOCA) Conference, Lexington, KY, USA, May.
  36. Turner, L.K. and Collins, F.G. (2013), "Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete", Constr. Build. Mater., 43, 125-130. https://doi.org/10.1016/j.conbuildmat.2013.01.023.
  37. Wang, H., Li, H. and Yan, F. (2005), "Synthesis and mechanical properties of metakaolinite-based geopolymer", Coll. Surf. A: Physicochem. Eng. Aspect., 268(1-3), 1-6. https://doi.org/10.1016/j.colsurfa.2005.01.016.
  38. Weng, L. and Sagoe-Crentsil, K. (2007), "Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I-Low Si/Al ratio systems", J. Mater. Sci., 42(9), 2997-3006. https://doi.org/10.1007/s10853-006-0820-2.
  39. Xia, M. and Sanjayan, J. (2016), "Method of formulating geopolymer for 3D printing for construction applications", Mater. Des., 110, 382-390. https://doi.org/10.1016/j.matdes.2016.07.136.
  40. Xu, H. and Van Deventer, J.S. (2003), "Effect of source materials on geopolymerization", Indus. Eng. Chem. Res., 42(8), 1698-1706. https://doi.org/10.1021/ie0206958.
  41. Xu, H. and Van Deventer, J.S.J. (2000), "The geopolymerisation of aluminosilicate minerals", Int. J. Mineral Proc., 59(3), 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5
  42. Yao, X., Zhang, Z., Zhu, H. and Chen, Y. (2009), "Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry", Thermochimica Acta, 493(1-2), 49-54. https://doi.org/10.1016/j.tca.2009.04.002.
  43. Zhang, Y. and Sun, W. (2007), "Semi-empirical AM1 Calculations on 6-memebered alumino-silicate rings model: Implications for dissolution process of metakaoline in alkaline solutions", J. Mater. Sci., 42(9), 3015-3023. https://doi.org/10.1007/s10853-006-0521-x.
  44. Zhang, Y., Wei, S., Zongjin, L. and Yantao, J. (2009), "Study of polycondensation process of metakaolin-based geopolymeric cement using semi-empirical AM1 calculations", Adv. Cement Res., 21(2), 67-73. https://doi.org/10.1680/adcr.2008.00017.
  45. Zhang, Z., Provis, J.L., Wang, H., Bullen, F. and Reid, A. (2013), "Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin", Thermochimica Acta, 565, 163-171. https://doi.org/10.1016/j.tca.2013.01.040.
  46. Zhang, Z., Wang, H., Yao, X. and Zhu, Y. (2012), "Effects of halloysite in kaolin on the formation and properties of geopolymers", Cement Concrete Compos., 34(5), 709-715. https://doi.org/10.1016/j.cemconcomp.2012.02.003.
  47. Zhang, Z., Wang, K., Mo, B., Li, X. and Cui, X. (2015), "Preparation and characterization of a reflective and heat insulative coating based on geopolymers", Energy Build., 87, 220-225. https://doi.org/10.1016/j.enbuild.2014.11.028.