참고문헌
- Abas, F.M., Gilbert, R.I., Foster, S.J. and Bradford, M.A. (2013), "Strength and serviceability of continuous composite slabs with deep trapezoidal steel decking and steel fibre reinforced concrete", Eng. Struct., 49, 866-875. https://doi.org/10.1016/j.engstruct.2012.12.043.
- Abbas, H., Gupta, N.K. and Alam, M. (2004), "Nonlinear response of concrete beams and plates under impact loading", Int. J. Impact Eng., 30(8), 1039-1053. https://doi.org/10.1016/j.ijimpeng.2004.06.011.
- Abdul-Rahman, M., Al-Attar, A.A., Hamada, H.M. and Tayeh, B. (2020), "Microstructure and structural analysis of polypropylene fibre reinforced reactive powder concrete beams exposed to elevated temperature", J. Build. Eng., 29, 101167. https://doi.org/10.1016/j.jobe.2019.101167.
- Al-Attar, A.A., Abdulrahman, M.B., Hamada, H.M. and Tayeh, B.A. (2019), "Investigating the behaviour of hybrid fibre-reinforced reactive powder concrete beams after exposure to elevated temperatures", J. Mater. Res. Technol., 1-11.
- Al-Tayeb, M., Zeyad, A., Dawoud, O. and Tayeh, B. (2020), "Experimental and numerical investigations of the influence of partial replacement of coarse aggregates by plastic waste on the impact load", Int. J. Sustain. Eng., 1-8.
- Algassem, O., Li, Y. and Aoude, H. (2019), "Ability of steel fibers to enhance the shear and flexural behavior of high-strength concrete beams subjected to blast loads", Eng. Struct., 199, 109611. https://doi.org/10.1016/j.engstruct.2019.109611.
- Ammari, M.S., Bederina, M., Belhadj, B. and Merrah, A. (2020), "Effect of steel fibers on the durability properties of sand concrete with barley straws", Constr. Build. Mater., 264, 120689. https://doi.org/10.1016/j.conbuildmat.2020.120689.
- Banthia, N., Bentur, A. and Mufti, A.A. (1998), Fiber Reinforced Concrete: Present and Future, Canadian Society for Civil Engineering.
- Banthia, N., Mindess, S., Bentur, A. and Pigeon, M. (1989), "Impact testing of concrete using a drop-weight impact machine", Exp. Mech., 29(1), 63-69. https://doi.org/10.1007/BF02327783.
- Boulekbache, B., Hamrat, M., Chemrouk, M. and Amziane, S. (2010), "Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material", Constr. Build. Mater., 24(9), 1664-1671. https://doi.org/10.1016/j.conbuildmat.2010.02.025.
- Chalioris, C.E. and Karayannis, C.G. (2009), "Effectiveness of the use of steel fibres on the torsional behaviour of flanged concrete beams", Cement Concrete Compos., 31(5), 331-341. https://doi.org/10.1016/j.cemconcomp.2009.02.007.
- Chern, J.C. and Young, C.H. (1989), "Compressive creep and shrinkage of steel fibre reinforced concrete", Int. J. Cement Compos. Lightweight Concrete, 11(4), 205-214. https://doi.org/10.1016/0262-5075(89)90100-0.
- Choi, O.C. and Lee, C. (2003), "Flexural performance of ring-type steel fiber-reinforced concrete", Cement Concrete Res., 33(6), 841-849. https://doi.org/10.1016/S0008-8846(02)01093-1.
- Choudhary, S., Jain, A., Bhavsar, H., Chaudhary, S. and Choudhary, R. (2020), "Analysis of steel fiber reinforced concrete wall panels under compression, flexural and impact loading", Mater. Today: Proceed. https://doi.org/10.1016/j.matpr.2020.07.509.
- Daud, R.A., Daud, S.A. and Al-Azzawi, A.A. (2020), "Tension stiffening evaluation of steel fibre concrete beams with smooth and deformed reinforcement", J. King Saud Univ.-Eng. Sci. https://doi.org/10.1016/j.jksues.2020.03.002.
- de Azevedo, A.R., Marvila, M.T., Tayeh, B.A., Cecchin, D., Pereira, A.C. and Monteiro, S.N. (2020), "Technological performance of acai natural fibre reinforced cement-based mortars", J. Build. Eng., 33, 101675. https://doi.org/10.1016/j.jobe.2020.101675.
- Dinh, H.H. (2009), Shear Behavior of Steel Fiber Reinforced Concrete Beams without Stirrup Reinforcement.
- Dixon, D.E., Prestrera, J.R., Burg, G.R., Chairman, S.A., Abdun-Nur, E.A., Barton, S.G., ... Carrasquillo, P.M. (1991), "Standard practice for selecting proportions for normal", Heavyweight, and Mass Concrete (ACI 211.1-91).
- Gholipour, G., Zhang, C. and Mousavi, A.A. (2019), "Loading rate effects on the responses of simply supported RC beams subjected to the combination of impact and blast loads", Eng. Struct., 201, 109837. https://doi.org/10.1016/j.engstruct.2019.109837.
- Hadjoudja, M., Mesbah, H.A., Bederina, M. and Makhloufi, Z. (2019), "Modeling of dimensional variations of a dune sand concrete reinforced by addition of steel fibers", J. Adhes. Sci. Technol., 33(21), 2307-2328. https://doi.org/10.1080/01694243.2019.1641176.
- Haido, J.H., Abu Bakar, B.H., Abdul-Razzak, A.A. and Jayaprakash, J. (2010), "Dynamic response simulation for reinforced concrete slabs", Simul. Model. Pract. Theory, 18(6), 696-711. https://doi.org/10.1016/j.simpat.2010.01.011.
- Haido, J.H., Bakar, B.H.A., Abdul-Razzak, A.A., Jayaprakash, J. and Choong, K.K. (2011), "Simulation of dynamic response for steel fibrous concrete members using new material modeling", Constr. Build. Mater., 25(3), 1407-1418. https://doi.org/10.1016/j.conbuildmat.2010.09.002.
- Hamid Pesaran, B., Behzad, N., Abdul Rahman Mohd, S. and Lai, F.C. (2012), "Flexural behavior of steel-fiber-added-RC (SFARC) beams with C30 and C50 classes of concrete", Int. J. Sustain. Constr. Eng. Technol., 3(1), 54-64.
- Hassan, R.F., Jaber, M.H., Al-Salim, N.H. and Hussein, H.H. (2020), "Experimental research on torsional strength of synthetic/steel fiber-reinforced hollow concrete beam", Eng. Struct., 220, 110948. https://doi.org/10.1016/j.engstruct.2020.110948.
- Holschemacher, K., Mueller, T. and Ribakov, Y. (2010), "Effect of steel fibres on mechanical properties of high-strength concrete", Mater. Des. (1980-2015), 31(5), 2604-2615. https://doi.org/10.1016/j.matdes.2009.11.025.
- Hrynyk, T.D. and Vecchio, F.J. (2014), "Behavior of steel fiber-reinforced concrete slabs under impact load", ACI Struct. J., 111(5), 1213-1223. https://doi.org/10.14359/51686923
- Hughes, G. and Speirs, D. (1982), An Investigation of the Beam Impact Problem.
- Jin, L., Zhang, R., Dou, G., Xu, J. and Du, X. (2017), "Experimental and numerical study of reinforced concrete beams with steel fibers subjected to impact loading", Int. J. Damage Mech., 27(7), 1058-1083. https://doi.org/10.1177/1056789517721616.
- Laranjeira, F., Grunewald, S., Walraven, J., Blom, C., Molins, C. and Aguado, A. (2011), "Characterization of the orientation profile of steel fiber reinforced concrete", Mater. Struct., 44(6), 1093-1111. https://doi.org/10.1617/s11527-010-9686-5.
- Lee, C. and Kim, H. (2010), "Orientation factor and number of fibers at failure plane in ring-type steel fiber reinforced concrete", Cement Concrete Res., 40(5), 810-819. https://doi.org/10.1016/j.cemconres.2009.11.009.
- Lee, J.Y., Shin, H.O., Min, K.H. and Yoon, Y.S. (2018), "Flexural assessment of blast-damaged RC beams retrofitted with CFRP sheet and steel fiber", Int. J. Polym. Sci., 2018, 2036436. https://doi.org/10.1155/2018/2036436.
- Li, Y. and Aoude, H. (2020), "Influence of steel fibers on the static and blast response of beams built with high-strength concrete and high-strength reinforcement", Eng. Struct., 221, 111031. https://doi.org/10.1016/j.engstruct.2020.111031.
- Lin, W., Yoda, T. and Taniguchi, N. (2014), "Application of SFRC in steel-concrete composite beams subjected to hogging moment", J. Constr. Steel Res., 101, 175-183. https://doi.org/10.1016/j.jcsr.2014.05.008.
- Liu, R., Li, H., Jiang, Q. and Meng, X. (2020), "Experimental investigation on flexural properties of directional steel fiber reinforced rubberized concrete", Struct., 27, 1660-1669. https://doi.org/10.1016/j.istruc.2020.08.007.
- Magnusson, J., Hallgren, M. and Ansell, A. (2010), "Air-blast-loaded, high-strength concrete beams. Part I: Experimental investigation", Mag. Concrete Res., 62(2), 127-136. https://doi.org/10.1680/macr.2008.62.2.127
- Mansour, W. and Tayeh, B.A. (2020), "Shear behaviour of RC beams strengthened by various ultrahigh performance fibre-reinforced concrete systems", Adv. Civil Eng., 2020, 2139054.
- Merta, I. and Tschegg, E.K. (2013), "Fracture energy of natural fibre reinforced concrete", Constr. Build. Mater., 40, 991-997. https://doi.org/10.1016/j.conbuildmat.2012.11.060.
- Mertol, H.C., Baran, E. and Bello, H.J. (2015), "Flexural behavior of lightly and heavily reinforced steel fiber concrete beams", Constr. Build. Mater., 98, 185-193. https://doi.org/10.1016/j.conbuildmat.2015.08.032.
- Min, K.H., Kwon, K.Y., Lee, J.Y. and Yoon, Y.S. (2014), "Effects of steel fibre and shear reinforcement on static and impact load resistances of concrete beams", Mag. Concrete Res., 66(19), 998-1006. https://doi.org/10.1680/macr.14.00050.
- Mohammadi, Y., Carkon-Azad, R., Singh, S. P. and Kaushik, S.K. (2009), "Impact resistance of steel fibrous concrete containing fibres of mixed aspect ratio", Constr. Build. Mater., 23(1), 183-189. https://doi.org/10.1016/j.conbuildmat.2008.01.002.
- Mu, R., Li, H., Qing, L., Lin, J. and Zhao, Q. (2017), "Aligning steel fibers in cement mortar using electro-magnetic field", Constr. Build. Mater., 131, 309-316. https://doi.org/10.1016/j.conbuildmat.2016.11.081.
- Mustafa, M.A.T., Hanafi, I., Mahmoud, R. and Tayeh, B.A. (2019), "Effect of partial replacement of sand by plastic waste on impact resistance of concrete: experiment and simulation", Struct., 20, 519-526. https://doi.org/10.1016/j.istruc.2019.06.008.
- Noaman, A.T., Abu Bakar, B.H. and Akil, H.M. (2016), "Experimental investigation on compression toughness of rubberized steel fibre concrete", Constr. Build. Mater., 115, 163-170. https://doi.org/10.1016/j.conbuildmat.2016.04.022.
- Okay, F. and Engin, S. (2012), "Torsional behavior of steel fiber reinforced concrete beams", Constr. Build. Mater., 28(1), 269-275. https://doi.org/10.1016/j.conbuildmat.2011.08.062.
- Olivito, R.S. and Zuccarello, F.A. (2010), "An experimental study on the tensile strength of steel fiber reinforced concrete", Compos. Part B: Eng., 41(3), 246-255. https://doi.org/10.1016/j.compositesb.2009.12.003.
- Ong, K.C.G., Basheerkhan, M. and Paramasivam, P. (1999), "Resistance of fibre concrete slabs to low velocity projectile impact", Cement Concrete Compos., 21(5), 391-401. https://doi.org/10.1016/S0958-9465(99)00024-4.
- Ozcan, D.M., Bayraktar, A., Sahin, A., Haktanir, T. and Turker, T. (2009), "Experimental and finite element analysis on the steel fiber-reinforced concrete (SFRC) beams ultimate behavior", Constr. Build. Mater., 23(2), 1064-1077. https://doi.org/10.1016/j.conbuildmat.2008.05.010.
- Raut, L.L. and Kulkarni, D. (2014), "Torsional strengthening of under reinforced concrete beams using crimped steel fiber", Int. J. Res. Eng. Technol., 3(6), 466-471. https://doi.org/10.15623/ijret.2014.0306087
- Rossi, P. (1998), Les Betons de Fibres Metalliques, Ed. Techniques Ingenieur.
- Sebaibi, N., Benzerzour, M. and Abriak, N.E. (2014), "Influence of the distribution and orientation of fibres in a reinforced concrete with waste fibres and powders", Constr. Build. Mater., 65, 254-263. https://doi.org/10.1016/j.conbuildmat.2014.04.134.
- Struck, W. and Voggenreiter, W. (1975), "Examples of impact and impulsive loading in the field of civil engineering", Materiaux Constr., 8(2), 81-87. https://doi.org/10.1007/BF02476326.
- Suaris, W. and Shah, S.P. (1981), "Inertial effects in the instrumented impact testing of cementitious composites", Cement Concrete Aggreg., 3(2), 77-83. https://doi.org/10.1520/CCA10208J
- Tayeh, B.A., Bakar, B.A. and Johari, M.M. (2012), "Mechanical properties of old concrete-UHPFC interface", The Concrete Repair, Rehabilitation and Retrofitting III: 3rd International Conference on Concrete Repair, Rehabilitation and Retrofitting, ICCRRR-3, Cape Town, South Africa, September.
- Ulzurrun, G.S.D. and Zanuy, C. (2017), "Enhancement of impact performance of reinforced concrete beams without stirrups by adding steel fibers", Constr. Build. Mater., 145, 166-182. https://doi.org/10.1016/j.conbuildmat.2017.04.005.
- Wang, N., Mindess, S. and Ko, K. (1996), "Fibre reinforced concrete beams under impact loading", Cement Concrete Res., 26(3), 363-376. https://doi.org/10.1016/S0008-8846(96)85024-1.
- Yang, F., Feng, W., Liu, F., Jing, L., Yuan, B. and Chen, D. (2019), "Experimental and numerical study of rubber concrete slabs with steel reinforcement under close-in blast loading", Constr. Build. Mater., 198, 423-436. https://doi.org/10.1016/j.conbuildmat.2018.11.248.
- Yildizel, S.A., Tayeh, B.A. and Calis, G. (2020), "Experimental and modelling study of mixture design optimisation of glass fibre-reinforced concrete with combined utilisation of Taguchi and Extreme Vertices Design Techniques", J. Mater. Res. and Technol., 9(2), 2093-2106. https://doi.org/10.1016/j.jmrt.2020.02.083.
- Yoo, D.Y., Banthia, N., Lee, J.Y. and Yoon, Y.S. (2018), "Effect of fiber geometric property on rate dependent flexural behavior of ultra-high-performance cementitious composite", Cement Concrete Compos., 86, 57-71. https://doi.org/10.1016/j.cemconcomp.2017.11.002.
- Yoo, D.Y., Yoon, Y.S. and Banthia, N. (2015), "Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate", Cement Concrete Compos., 64, 84-92. https://doi.org/10.1016/j.cemconcomp.2015.10.001.
- Zarrin, O. and Khoshnoud, H.R. (2016), "Experimental investigation on self-compacting concrete reinforced with steel fibers", Struct. Eng. Mech., 59(1), 133-151. http://dx.doi.org/10.12989/sem.2016.59.1.133.
- Zeyad, A.M., Khan, A.H. and Tayeh, B.A. (2020), "Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers", J. Mater. Res. Technol., 9(1), 806-818. https://doi.org/10.1016/j.jmrt.2019.11.021.
- Zhang, J., Maalej, M. and Quek Ser, T. (2007), "Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact", J. Mater. Civil Eng., 19(10), 855-863. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(855).
- Zhang, Y., Liu, A., Chen, B., Zhang, J., Pi, Y.L. and Bradford, M.A. (2020), "Experimental and numerical study of shear connection in composite beams of steel and steel-fibre reinforced concrete", Eng. Struct., 215, 110707. https://doi.org/10.1016/j.engstruct.2020.110707.