References
- Aoyagi, Y. and Yamada, K. (1983), "Strength and deformation characteristics of reinforced concrete shell elements subjected to in-plane forces", Proc. JPN Soc. Civil Eng., 331, 167-180. https://doi.org/10.2208/jscej1969.1983.331_167
- Burns, S.J. and Hanley, K.J. (2017), "Establishing stable time-steps for DEM simulations of non-collinear planar collisions with linear contact laws", Int. J. Numer. Meth. Eng., 110, 186-200. https://doi.org/10.1002/nme.5361.
- Chen, H., Xu, B., Mo, Y.L. and Zhou, T. (2018), "Behaviour of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings", Constr. Build. Mater., 178, 418-431. https://doi.org/10.1016/j.conbuildmat.2018.05.052.
- Contrafatto, L., Cuomo, M. and Gazzo, S. (2016), "A concrete homogenisation technique at meso-scale level accounting for damaging behaviour of cement paste and aggregates", Comput. Struct., 173, 1-18. https://doi.org/10.1016/j.compstruc.2016.05.009.
- Eddy, L. and Nagai, K. (2016), "Numerical simulation of beam-column knee joints with mechanical anchorages by 3D rigid body spring model", Eng. Struct., 126, 547-558. https://doi.org/10.1016/j.engstruct.2016.07.054.
- Haeri, H., Sarfarazi, V., Zhu, Z. and Marji, M.F. (2018), "Simulating the influence of pore shape on the Brazilian tensile strength of concrete specimens using PFC2D", Comput. Concrete, 22(5), 469-479. https://doi.org/10.12989/cac.2018.22.5.469.
- He, J., Pan, F., Cai, C.S., Habte, F. and Chowdhury, A. (2018), "Finite-element modelling framework for predicting realistic responses of light-frame low-rise buildings under wind loads", Eng. Struct., 164, 53-69. https://doi.org/10.1016/j.engstruct.2018.01.034.
- Li, D., Li, Z., Lv, C., Zhang, G. and Yin, Y. (2018), "A predictive model of the effective tensile and compressive strengths of concrete considering porosity and pore size", Constr. Build. Mater., 170, 520-526. https://doi.org/10.1016/j.conbuildmat.2018.03.028.
- Long, X. and Lee, C.K. (2015), "Improved strut-and-tie method for 2D RC beam-column joints under monotonic loading", Comput. Concrete, 15(5), 807-831. https://doi.org/10.12989/cac.2015.15.5.807.
- Lopez, C.M., Carol, I. and Aguado, A. (2008), "Meso-structural study of concrete fracture using interface elements. II: compression, biaxial and Brazilian test", Mater. Struct., 41, 601-620. https://doi.org/10.1617/s11527-007-9312-3.
- Luthfi, M.M., Zhuang, X.Y. and Rabczuk, T. (2018), "Computational modelling of fracture in encapsulation-based self-healing concrete using cohesive elements", Compos. Struct., 196, 63-75. https://doi.org/10.1016/j.compstruct.2018.04.066.
- Nguyen, T., Ghazlan, A., Kashani, A., Bordas, S. and Ngo, T. (2018), "3D meso-scale modelling of foamed concrete based on X-ray computed tomography", Constr. Build. Mater., 188, 583-598. https://doi.org/10.1016/j.conbuildmat.2018.08.085.
- Ostrowski, K., Sadowski, L., Stefaniuk, D., Walach, D., Gawenda, T., Oleksik, K. and Usydus, I. (2018), "The effect of the morphology of coarse aggregate on the properties of self-compacting high-performance fibre-reinforced concrete", Mater., 11(8), 1372. https://doi.org/10.3390/ma11081372.
- Ostrowski, K., Stefaniuk, D., Sadowski, L., Krzywinski, K., Gicala, M. and Rozanska, M. (2020), "Potential use of granite waste sourced from rock processing for the application as coarse aggregate in high-performance self-compacting concrete", Constr. Build. Mater., 238, 117794. https://doi.org/10.1016/j.conbuildmat.2019.117794.
- Rasmussen, L.L., de Farias, M.M. and de Assis, A.P. (2018), "Extended rigid body spring network method for the simulation of brittle rocks", Comput. Geotech., 99, 31-41. https://doi.org/10.1016/j.compgeo.2018.02.021.
- Ren, W., Yang, Z., Sharma, R., Zhang, C.H. and Withers, P.J. (2015), "Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete", Eng. Fract. Mech., 133, 24-39. https://doi.org/10.1016/j.engfracmech.2014.10.016.
- Roubin, E., Colliat, J.B. and Benkemoun, N. (2015), "Meso-scale modelling of concrete: A morphological description based on excursion sets of random fields", Comput. Mater. Sci., 102, 183-195. https://doi.org/10.1016/j.commatsci.2015.02.039.
- Sadowski, L., Hola, J., Czarnecki, L. and Mathia, T.G. (2021), "New paradigm in the metrology of concrete surface morphology: Methods, parameters and applications", Measure., 169, 108497. https://doi.org/10.1016/j.measurement.2020.108497.
- Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm", Comput. Concrete, 22(4), 355-363. https://doi.org/10.12989/cac.2018.22.4.355.
- Shen, M., Shi, Z., Zhao, C., Zhong, X., Liu, B. and Shu, X. (2019), "2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements", Comput. Concrete, 24(3), 207-222. https://doi.org/10.12989/cac.2019.24.3.207.
- Skarzynski, L., Nitka, M. and Tejchman, J. (2015), "Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray μCT images of internal structure", Eng. Fract. Mech., 147, 13-35. https://doi.org/10.1016/j.engfracmech.2015.08.010.
- Talischi, C., Paulino, G.H. and Pereira, A. (2010), "Polygonal finite elements for topology optimization: A unifying paradigm", Int. J. Numer. Meth. Eng., 82, 671-698. https://doi.org/10.1002/nme.2763.
- Tekin, I., Birgul, R. and Aruntas, H.Y. (2018), "X-ray CT monitoring of macro void development in mortars exposed to sulphate attack", Comput. Concrete, 21(4), 367-376. https://doi.org/10.12989/cac.2018.21.4.367.
- Trawinski, W., Bohinski, J. and Tejchman, J. (2016), "Two-dimensional simulations of concrete fracture at aggregate level with cohesive elements based on X-ray μCT images", Eng. Fract. Mech., 168, 204-226. https://doi.org/10.1016/j.engfracmech.2016.09.012.
- Trawinski, W., Tejchman, J. and Bohinski, J. (2018), "A three-dimensional meso-scale modelling of concrete fracture based on cohesive elements and X-ray μCT images", Eng. Fract. Mech., 189, 27-50. https://doi.org/10.1016/j.engfracmech.2017.10.003.
- Walraven, J. and Reinhardt, H. (1981), "Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concretes subjected to shear loading", Herony, 26, 26-33.
- Wang, Z.L., Gu, X.L. and Lin, F. (2011), "Experimental study on failure criterion of mortar under combined stresses", J. Build. Mater., 4(4), 235-245.
- Xu, Y. and Chen, S.H. (2016), "A method for modelling the damage behavior of concrete with a three-phase mesostructure", Constr. Build. Mater., 102, 26-38. https://doi.org/10.1016/j.conbuildmat.2015.10.151.
- Yilmaz, O. and Molinari, J.F. (2018), "A mesoscale fracture model for concrete", Cement Concrete Res., 97, 84-94. https://doi.org/10.1016/j.cemconres.2017.03.014.
- Yin, A., Yang, X., Zeng, G. and Gao, H. (2018), "Experimental and numerical investigation of fracture behaviour of asphalt mixture under direct shear loading", Constr. Build. Mater., 86, 21-32. https://doi.org/10.1016/j.conbuildmat.2015.03.099.
- Yin, A., Yang, X., Zhang, C., Zeng, G. and Yang, Z. (2015), "Three-dimensional heterogeneous fracture simulation of asphalt mixture under uniaxial tension with cohesive crack model", Constr. Build. Mater., 76, 103-117. https://doi.org/10.1016/j.conbuildmat.2014.11.065.
- Yu, J. and Li, F.M. (2017), "A meso-scale model for analysing the chloride diffusion of concrete subjected to external stress", Constr. Build. Mater., 130, 11-21. https://doi.org/10.1016/j.conbuildmat.2016.11.054.
- Zeng, G., Yang, X., Yin, A. and Bai, F. (2014), "Simulation of damage evolution and crack propagation in three-point bending pre-cracked asphalt mixture beam", Constr. Build. Mater., 55, 323-332. https://doi.org/10.1016/j.conbuildmat.2014.01.058.
- Zhang, Z., Song, X., Liu, Y., Wu, D. and Song, C. (2017), "Three-dimensional mesoscale modelling of concrete composites by using random walking algorithm", Compos. Sci. Technol., 149, 235-245. https://doi.org/10.1016/j.compscitech.2017.06.015.
- Zhao, C., Zhong, X., Liu, B., Shu, X. and Shen, M. (2018), "A modified RBSM for simulating the failure process of RC structures", Comput. Concrete, 21(1), 219-229. https://doi.org/10.12989/cac.2018.21.2.219.
- Zhong, X., Peng, X., Yan, S., Shen, M. and Zhai, Y. (2018), "Assessment of the feasibility of detecting concrete cracks in images acquired by unmanned aerial vehicles", Auto. Constr., 89, 49-57. https://doi.org/10.1016/j.autcon.2018.01.005.
- Zhong, X., Zhao, C., Liu, B., Shu, X. and Shen, M. (2018), "A 3-D RBSM for simulating the failure process of RC structures", Struct. Eng. Mech., 65(3), 291-302. https://doi.org/10.12989/SEM.2018.65.3.291
- Ziaei-Rad, V., Nouri, N., Ziaei-Rad, S. and Abtahi, M. (2012), "A numerical study on mechanical performance of asphalt mixture using a meso-scale finite element model", Finite Elem. Anal. Des., 57, 81-91. https://doi.org/10.1016/j.finel.2012.03.004.
- Ziaei-Rad, V., Nouri, N., Ziaei-Rad, S. and Abtahi, M. (2012), "A numerical study on mechanical performance of asphalt mixture using a meso-scale finite element model", Finite Elem. Anal. Des., 57, 81-91. https://doi.org/10.1016/j.finel.2012.03.004.