References
- Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
- Alijani, F., Amabili, M., Karagiozis, K. and Bakhtiari-Nejad, F. (2011), "Nonlinear vibrations of functionally graded doubly curved shallow shells", J. Sound Vib., 330, 1432-1454. https://doi.org/10.1016/j.jsv.2010.10.003.
- Chen, H., Wang, A., Hao, Y. and Zhang, W. (2017), "Free vibration of FGM sandwich doubly-curved shallow shell based on a new shear deformation theory with stretching effects", Compos. Struct., 179, 50-60. https://doi.org/10.1016/j.compstruct.2017.07.032.
- Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B: Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.
- Dergachova, N., Zou, G. and Chang, Z. (2020), "Static analysis of functionally graded plates with a porous middle layer based on higher order shear deformation theory with linear/quadratic transverse displacement", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234(24), 4917-4931. https://doi.org/10.1177/0954406220928369.
- Ghorbanpour Arani, A., Khani, M. and Khoddami Maraghi, Z. (2018), "Dynamic analysis of a rectangular porous plate resting on an elastic foundation using high-order shear deformation theory", J. Vib. Control, 24, 3698-3713. https://doi.org/10.1177/1077546317709388.
- Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., ... & Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, 25, 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
- Kiani, Y., Akbarzadeh, A.H., Chen, Z.T. and Eslami, M.R. (2012), "Static and dynamic analysis of an FGM doubly curved panel resting on the Pasternak-type elastic foundation", Compos. Struct., 94, 2474-2484. https://doi.org/10.1016/j.compstruct.2012.02.028.
- Kiani, Y., Sadighi, M. and Eslami, M.R. (2013), "Dynamic analysis and active control of smart doubly curved FGM panels", Compos. Struct., 102, 205-216. https://doi.org/10.1016/j.compstruct.2013.02.031.
- Krylov, V.I. and Skoblya, N.S. (1977), "A handbook of methods of approximate fourier transformation and inversion of the Laplace transformation".
- Matsunaga, H. (2008), "Free vibration and stability of functionally graded shallow shells according to a 2D higher-order deformation theory", Compos. Struct., 84, 132-146. https://doi.org/10.1016/j.compstruct.2007.07.006.
- Reddy. J.N. (1990), "General non-linear third-order theory of plates with moderate thickness", Int. J. Nonlin. Mech., 25(6), 677-686. https://doi.org/10.1016/0020-7462(90)90006-U.
- Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press.
- Rezaei, A.S., Saidi, A.R., Abrishamdari, M. and Mohammadi, M.H.P. (2017), "Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: An analytical approach", Thin Wall. Struct., 120, 366-377. https://doi.org/10.1016/j.tws.2017.08.003.
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
- Shakeri, M. and Mirzaeifar, R. (2009), "Static and dynamic analysis of thick functionally graded plates with piezoelectric layers using layerwise finite element model", Mech. Adv. Mater. Struct., 16, 561-575. https://doi.org/10.1080/15376490802625514.
- Sun, D. and Luo, S.N. (2011), "The wave propagation and dynamic response of rectangular functionally graded material plates with completed clamped supports under impulse load", Eur. J. Mech.-A/Solid., 30, 396-408. https://doi.org/10.1016/j.euromechsol.2011.01.001.
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32, 111-120. https://doi.org/10.1016/j.euromechsol.2011.01.001.
- Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53, 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143.
- Yang, J. and Shen, H.S. (2002), "Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments", J. Sound Vib., 255, 579-602. https://doi.org/10.1006/jsvi.2001.4161.
- Zhao, J., Choe, K., Xie, F., Wang, A., Shuai, C. and Wang, Q. (2018), "Three-dimensional exact solution for vibration analysis of thick functionally graded porous (FGP) rectangular plates with arbitrary boundary conditions", Compos. Part B: Eng., 155, 369-381. https://doi.org/10.1016/j.compositesb.2018.09.001.
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Free vibration analysis of functionally graded plates using the element-free kpRitz method", J. Sound Vib., 319, 918-939. https://doi.org/10.1016/j.jsv.2008.06.025.
- Zhao, X. and Liew, K.M. (2009), "Geometrically nonlinear analysis of functionally graded plates using the element-free kp-Ritz method", Comput. Meth. Appl. Mech. Eng., 198, 2796-2811. https://doi.org/10.1016/j.cma.2009.04.005.
- Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68, 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2.