References
- Abaqus (2003), Standard User's Manual, Version 6,4, Hibbit, Karlsson and Sorensen Inc, Pawtucket, RI, USA.
- Ahmadizadeh, M. and Shakib, H. (2016), "Experimental study of the in-plane behavior of confined stone masonry walls", J. Struct. Eng., 142, 04015145-1. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001417.
- Albert, M.L., Elwi, A.E. and Roger Cheng, J.J. (2001), "Strengthening of unreinforced masonry walls using FRPs", J. Compos. Constr., 5(2), 76-84. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:2(76).
- Almeida, F.P.A. and Lourenco, P.B. (2020), "Three-dimensional elastic properties of masonry by mechanics of structure gene", Int. J. Solid. Struct., 191-192, 202-211. https://doi.org/10.1016/j.ijsolstr.2019.12.009.
- Anthoine, A. (1995), "Derivation of the in-plane elastic characteristics of masonry through homogenisation theory", Int. J. Solid. Struct., 32(2), 137-163. https://doi.org/10.1016/0020-7683(94)00140-R.
- Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
- Casolo, S. and Milani, G. (2010), "A simplified homogenization-discrete element model for the non-linear static analysis of masonry walls out-of-plane loaded", Eng. Struct., 32, 2352-2366. https://doi.org/10.1016/j.engstruct.2010.04.010.
- Cecchi, A. and Sab, K. (2002), "A multi-parameter homogenisation study for modeling elastic masonry", Eur. J. Mech. A/Solid., 21(2), 249-268. https://doi.org/10.1016/S0997-7538(01)01195-0.
- Cecchi, A. and Sab, K. (2004), "A Comparison between a 3D discrete model and two homogenisation plate models for periodic elastic brickwork", Int. J. Solid. Struct, 41(9-10), 2259-2276. https://doi.org/10.1016/j.ijsolstr.2003.12.020.
- Cecchi, A., Milani, G. and Tralli, A. (2005), "Validation of analytical multiparameter homogenization models for out-of-plane loaded masonry walls by means of the finite element method", J. Eng. Mech., 131(2), 185-198. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:2(185).
- Cerrolaza, M., Sulem, J. and Elbied, A. (1999), "A Cosserat nonlinear finite element analysis of toward for blocky structures", Adv. Eng. Softw., 30, 69-83. https://doi.org/10.1016/S0965-9978(98)00059-3.
- CNR (2004), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures, National Research Council, Italy.
- Corradi, M., Borri, A. and Vignoli, A. (2002), "Strengthening techniques tested on masonry structures struck by the Umbria-Marche earthquake of 1997-1998", Constr. Build. Mater., 16(4), 229-239. https://doi.org/10.1016/S0950-0618(02)00014-4.
- Davidson, J.S., Fisher, J.W., Hammons, M.I., Porter, J.R. and Dinan, R.J. (2005), "Failure mechanisms of polymer-reinforced concrete masonry walls subjected to blast", J. Struct. Eng., 131(8), 1194-205. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:8(1194).
- Dhanasekar, M. (2010), "Review of modelling of masonry shear", Int. J. Adv. Eng. Sci. Appl. Math., 2(3), 106-118. https://doi.org/10.1007/s12572-011-0022-2
- Drougkas, A., Roca, P. and Molins, C. (2015), "Analytical micro-modeling of masonry periodic unit cells-Elastic properties", Int. J. Solid. Struct., 69-70, 169-188. https://doi.org/10.1016/j.ijsolstr.2015.04.039.
- Ehsani, M. (2005), "Strengthening of concrete and masonry structures with fiber reinforced polymers (FRP)", 30th Conference on Our World in Conference & Structures, Singapore, August.
- Erkut, S. and Yusuf, C. (2015), "Comparison of linear and nonlinear earthquake response of masonry walls", Comput. Concrete, 16(1), 17-35. https://doi.org/10.12989/cac.2015.16.1.017.
- Focacci, F. (2008), "Rinforzo delle murature con materiali compositi (Masonry strenghtening with composite materials)", Flaccovio, Palermo.
- Gilstrap, J.M. and Dolan, C.W. (1998), "Out-of-plane bending of FRP-reinforced masonry walls", Compos. Sci. Technol., 58(8), 1277-1284. https://doi.org/10.1016/S0266-3538(98)00007-4.
- Hamed, E. and Rabinovich, O. (2007), "Out-of plane behaviour of unreinforced masonry walls strengthened with FRP strips", Compos. Sci. Technol., 67, 489-500. https://doi.org/10.1016/j.compscitech.2006.08.021.
- Hamilton, H.R. and Dolan, C.W. (2001), "Flexural capacity of glass FRP strengthened concrete masonry walls", J. Compos. Constr., 5(3), 170-178. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:3(170).
- Hamoush, S., McGinley, M., Mlakar, P. and Terro, M.J. (2002), "Out-of-plane behavior of surface-reinforced masonry walls", Constr. Build. Mater., 16(6), 341-351. https://doi.org/10.1016/S0950-0618(02)00024-7.
- Hamoush, S.A., Mcginley, W.M., Mlakar, P., Scott, D. and Murray, K. (2001), "Out-of-plane strengthening of masonry walls with reinforced composites", J. Compos. Constr., 5(3), 139-145. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:3(139).
- JSCE (2001), Recommendations for Upgrading of Concrete Structures with Use of Continuous fiber Sheets, Concrete Engineering, Series 41, Tokyo Japan, Japan Society of Civil Engineer.
- Karaca, Z., Turkeli, E. and Pergel, S. (2017), "Seismic assessment of historical masonry structures: The case of Amasya Tashan", Comput. Concrete, 20(4), 409-418. https://doi.org/10.12989/cac.2017.20.4.409.
- Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a fourvariable quasi 3D HSDT", Eng. Comput., 130, 534-545. https://doi.org/10.1007/s00366-019-00732-1.
- Kiss, R.M., Kollar, L.P., Jai, J. and Krawinkler, H. (2002), "Masonry strengthened with FRP subjected to combined bending and compression, Part II: Test results and model predictions", J. Compos. Mater., l36(9), 1049-1063. https://doi.org/10.1177/0021998302036009475.
- Kuzik, M.D., Elwi, A.E. and Roger Cheng, J.J. (2003), "Cyclic flexure tests of masonry walls reinforced with glass fiber reinforced polymer sheets", J. Compos. Constr., 7(1), 20-30. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:1(20).
- Lee, S.J., Pande, G.N., Middleton, J. and Kralj, B. (1999), "Numerical modelling of brick masonry panels subject to lateral loading", Comput. Struct., 31(211), 473-479. https://doi.org/10.1016/0045-7949(95)00361-4.
- Lopez, J., Oller, S., Onate, E. and Lubliner, J. (1999), "Homogeneous constitutive model for masonry", Int. J. Numer. Meth. Eng., 46, 1651-1671. https://doi.org/10.1002/(SICI)1097-0207(19991210)46:10<1651::AID-NME718>3.0.CO;2-2.
- MATLAB 7.1. (2006), The MathWorksInc, Natick, MA.
- Maurizio, A. (2014), Mechanics of Masonry Structures, Springer Wien Heidelberg New York Dordrecht London.
- Meftah, S.A., Daya, E.M. and Tounsi, A. (2012), "Finite element modelling of sandwich box column with viscoelastic layer for passive vibrations control under seismic loading", Thin Wall. Struct., 51, 174-185. https://doi.org/10.1016/j.tws.2011.10.015.
- Milani, G. (2011), "Kinematic FE limit analysis homogenization model for masonry walls reinforced with continuous FRP grids", Int. J. Solid. Struct., 48(2), 326-345. https://doi.org/10.1016/j.ijsolstr.2010.10.007.
- Milani, G. (2011), "Simple homogenization model for the nonlinear analysis of in-plane loaded masonry walls", Comput. Struct., 89, 1586-1601. https://doi.org/10.1016/j.compstruc.2011.05.004.
- Milani, G. (2011), "Simple lower bound limit analysis homogenization model for in- and out-of-plane loaded masonry walls", Constr. Build. Mater., 25, 4426-4443. https://doi.org/10.1016/j.conbuildmat.2011.01.012.
- Milani, G. and Cecchi, A. (2013), "Compatible model for herringbone bond masonry: linear elastic homogenization, failure surfaces and structural implementation", Int. J. Solid. Struct., 50(20-21), 3274-3296. https://doi.org/10.1016/j.ijsolstr.2013.05.032.
- Milani, G., Lourenco, P.B. and Tralli, A. (2006), "Homogenised limit analysis of masonry walls, Part I: Failure surfaces", Comput. Struct., 84(3-4), 166-180. https://doi.org/10.1016/j.compstruc.2005.09.005.
- Pande, G.N., Liang, J.X. and Middleton, J. (1989), "Equivalent elastic moduli for brick masonry", Compt. Geotech., 8, 243-265. https://doi.org/10.1016/0266-352X(89)90045-1.
- Parisi, F., Balestrieri, C. and Aprone, D. (2016), "Nonlinear micromechanical model for tuff masonry: Experimental validation and performance limit states", Constr. Build. Mater., 105, 165-175. https://doi.org/10.1016/j.conbuildmat.2015.12.078.
- Pietruszczak, S. and Niu, X. (1992), "A mathematical description of macroscopic behaviour of brick masonry", Int. J. Solid. Struct., 29(5), 531-546. https://doi.org/10.1016/0020-7683(92)90052-U.
- Reddy, J.N. (1984), "A simple Higher- Order Theory of laminated composite plate", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
- Saidi, H., Bousahla, A.A. and Tounsi, A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., 11(I2), 289-307. http://dx.doi.org/10.12989/gae.2016.11.2.289.
- Salamon, M.D.G. (1968), "Elastic moduli of a stratified rock mass", Int. J. Rock Mech. Min. Sci., 5, 519-527. https://doi.org/10.1016/0148-9062(68)90039-9.
- Stefanou, I., Sab, K. and Heck, J.V. (2015), "Three dimensional homogenization of masonry structures with building blocks of finite strength: A closed form strength domain", Int. J. Solid. Struct., 54, 258-270. https://doi.org/10.1016/j.ijsolstr.2014.10.007.
- Triantafillou, T.C. (1998), "Strengthening of masonry structures using epoxy bonded FRP laminates", J Compos Constr., 2(2), 96-104. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:2(96).
- Tumialan, J.G., Galati, N. and Nanni, A. (2003), "Fiber-reinforced polymer strengthening of unreinforced masonry walls subjected to out-of-plane loads", ACI Struct. J., 100(3), 321-329.
- Turco, V., Secondin, S., Morbin, A., Valluzzi, M.R. and Modena, C. (2006), "Flexural and shear strengthening of un-reinforced masonry with FRP bars", Compos. Sci. Technol., 66, 289-296. https://doi.org/10.1016/j.compscitech.2005.04.042.
- Valente, M. and Milani, G. (2016), "Seismic assessment of historical masonry towers by means of simplified approaches and standard FEM", Constr. Build. Mater., 108, 74-104. https://doi.org/10.1016/j.conbuildmat.2016.01.025.
- Youzera, H., Meftah, S.A. and Daya, E.M. (2017), "Superharmonic resonance of cross-ply laminates by the method of multiple scales", Comput. Nonlin. Dyn., 12, 0545031. https://doi.org/10.1115/1.4036914
- Youzera, H., Meftah, S.A., Challamel, N. and Tounsi, A. (2012), "Nonlinear damping and forced vibration analysis of laminated composite beams", Compos. Part B: Eng., 43(3), 1147-1154. https://doi.org/10.1016/j.compositesb.2012.01.008.
- Zhen, W. and Wanji, C. (2008), "An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams", Compos. Struct., 84, 337-349. https://doi.org/10.1016/j.compstruct.2007.10.005.
- Zucchini, A. and Lourenco, P.B. (2002), "A micro-mechanical model for the homogenisation of masonry", Int. J. Solid. Struct, 39, 3233-3255. https://doi.org/10.1016/S0020-7683(02)00230-5.