DOI QR코드

DOI QR Code

Vibration and damping characteristics of the masonry wall strengthened with bonded fibre composite patch with viscoelastic adhesive layer

  • Laib, Salaheddine (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite Djillali Liabes) ;
  • Meftah, Sid Ahmed (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite Djillali Liabes) ;
  • Youzera, Hadj (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie) ;
  • Ziane, Noureddine (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite Djillali Liabes) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2020.08.02
  • Accepted : 2021.02.19
  • Published : 2021.03.25

Abstract

The present paper treats the free vibration problem of the masonry wall strengthened with thin composite plate by viscoelastic adhesive layer. For this goal two steps are considered in the analytical solution. In the first one, an efficient homogenisation procedure is given to provide the anisotropic properties of the masonry wall. The second one is dedicated to purpose simplified mathematical models related to both in-plane and out-of-plane vibration problems. In these models, the higher order shear theories (HSDT's) are employed for a more rigours description of the shear deformation trough the masonry wall and the composite sheet. Ritz's method is deployed as solution strategy in order to get the natural frequencies and their corresponding loss factors. The obtained results are validated with the finite element method (FEM) and then, a parametric study is undertaken for different kinds of masonry walls strengthened with composite sheets.

Keywords

References

  1. Abaqus (2003), Standard User's Manual, Version 6,4, Hibbit, Karlsson and Sorensen Inc, Pawtucket, RI, USA.
  2. Ahmadizadeh, M. and Shakib, H. (2016), "Experimental study of the in-plane behavior of confined stone masonry walls", J. Struct. Eng., 142, 04015145-1. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001417.
  3. Albert, M.L., Elwi, A.E. and Roger Cheng, J.J. (2001), "Strengthening of unreinforced masonry walls using FRPs", J. Compos. Constr., 5(2), 76-84. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:2(76).
  4. Almeida, F.P.A. and Lourenco, P.B. (2020), "Three-dimensional elastic properties of masonry by mechanics of structure gene", Int. J. Solid. Struct., 191-192, 202-211. https://doi.org/10.1016/j.ijsolstr.2019.12.009.
  5. Anthoine, A. (1995), "Derivation of the in-plane elastic characteristics of masonry through homogenisation theory", Int. J. Solid. Struct., 32(2), 137-163. https://doi.org/10.1016/0020-7683(94)00140-R.
  6. Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
  7. Casolo, S. and Milani, G. (2010), "A simplified homogenization-discrete element model for the non-linear static analysis of masonry walls out-of-plane loaded", Eng. Struct., 32, 2352-2366. https://doi.org/10.1016/j.engstruct.2010.04.010.
  8. Cecchi, A. and Sab, K. (2002), "A multi-parameter homogenisation study for modeling elastic masonry", Eur. J. Mech. A/Solid., 21(2), 249-268. https://doi.org/10.1016/S0997-7538(01)01195-0.
  9. Cecchi, A. and Sab, K. (2004), "A Comparison between a 3D discrete model and two homogenisation plate models for periodic elastic brickwork", Int. J. Solid. Struct, 41(9-10), 2259-2276. https://doi.org/10.1016/j.ijsolstr.2003.12.020.
  10. Cecchi, A., Milani, G. and Tralli, A. (2005), "Validation of analytical multiparameter homogenization models for out-of-plane loaded masonry walls by means of the finite element method", J. Eng. Mech., 131(2), 185-198. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:2(185).
  11. Cerrolaza, M., Sulem, J. and Elbied, A. (1999), "A Cosserat nonlinear finite element analysis of toward for blocky structures", Adv. Eng. Softw., 30, 69-83. https://doi.org/10.1016/S0965-9978(98)00059-3.
  12. CNR (2004), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures, National Research Council, Italy.
  13. Corradi, M., Borri, A. and Vignoli, A. (2002), "Strengthening techniques tested on masonry structures struck by the Umbria-Marche earthquake of 1997-1998", Constr. Build. Mater., 16(4), 229-239. https://doi.org/10.1016/S0950-0618(02)00014-4.
  14. Davidson, J.S., Fisher, J.W., Hammons, M.I., Porter, J.R. and Dinan, R.J. (2005), "Failure mechanisms of polymer-reinforced concrete masonry walls subjected to blast", J. Struct. Eng., 131(8), 1194-205. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:8(1194).
  15. Dhanasekar, M. (2010), "Review of modelling of masonry shear", Int. J. Adv. Eng. Sci. Appl. Math., 2(3), 106-118. https://doi.org/10.1007/s12572-011-0022-2
  16. Drougkas, A., Roca, P. and Molins, C. (2015), "Analytical micro-modeling of masonry periodic unit cells-Elastic properties", Int. J. Solid. Struct., 69-70, 169-188. https://doi.org/10.1016/j.ijsolstr.2015.04.039.
  17. Ehsani, M. (2005), "Strengthening of concrete and masonry structures with fiber reinforced polymers (FRP)", 30th Conference on Our World in Conference & Structures, Singapore, August.
  18. Erkut, S. and Yusuf, C. (2015), "Comparison of linear and nonlinear earthquake response of masonry walls", Comput. Concrete, 16(1), 17-35. https://doi.org/10.12989/cac.2015.16.1.017.
  19. Focacci, F. (2008), "Rinforzo delle murature con materiali compositi (Masonry strenghtening with composite materials)", Flaccovio, Palermo.
  20. Gilstrap, J.M. and Dolan, C.W. (1998), "Out-of-plane bending of FRP-reinforced masonry walls", Compos. Sci. Technol., 58(8), 1277-1284. https://doi.org/10.1016/S0266-3538(98)00007-4.
  21. Hamed, E. and Rabinovich, O. (2007), "Out-of plane behaviour of unreinforced masonry walls strengthened with FRP strips", Compos. Sci. Technol., 67, 489-500. https://doi.org/10.1016/j.compscitech.2006.08.021.
  22. Hamilton, H.R. and Dolan, C.W. (2001), "Flexural capacity of glass FRP strengthened concrete masonry walls", J. Compos. Constr., 5(3), 170-178. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:3(170).
  23. Hamoush, S., McGinley, M., Mlakar, P. and Terro, M.J. (2002), "Out-of-plane behavior of surface-reinforced masonry walls", Constr. Build. Mater., 16(6), 341-351. https://doi.org/10.1016/S0950-0618(02)00024-7.
  24. Hamoush, S.A., Mcginley, W.M., Mlakar, P., Scott, D. and Murray, K. (2001), "Out-of-plane strengthening of masonry walls with reinforced composites", J. Compos. Constr., 5(3), 139-145. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:3(139).
  25. JSCE (2001), Recommendations for Upgrading of Concrete Structures with Use of Continuous fiber Sheets, Concrete Engineering, Series 41, Tokyo Japan, Japan Society of Civil Engineer.
  26. Karaca, Z., Turkeli, E. and Pergel, S. (2017), "Seismic assessment of historical masonry structures: The case of Amasya Tashan", Comput. Concrete, 20(4), 409-418. https://doi.org/10.12989/cac.2017.20.4.409.
  27. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a fourvariable quasi 3D HSDT", Eng. Comput., 130, 534-545. https://doi.org/10.1007/s00366-019-00732-1.
  28. Kiss, R.M., Kollar, L.P., Jai, J. and Krawinkler, H. (2002), "Masonry strengthened with FRP subjected to combined bending and compression, Part II: Test results and model predictions", J. Compos. Mater., l36(9), 1049-1063. https://doi.org/10.1177/0021998302036009475.
  29. Kuzik, M.D., Elwi, A.E. and Roger Cheng, J.J. (2003), "Cyclic flexure tests of masonry walls reinforced with glass fiber reinforced polymer sheets", J. Compos. Constr., 7(1), 20-30. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:1(20).
  30. Lee, S.J., Pande, G.N., Middleton, J. and Kralj, B. (1999), "Numerical modelling of brick masonry panels subject to lateral loading", Comput. Struct., 31(211), 473-479. https://doi.org/10.1016/0045-7949(95)00361-4.
  31. Lopez, J., Oller, S., Onate, E. and Lubliner, J. (1999), "Homogeneous constitutive model for masonry", Int. J. Numer. Meth. Eng., 46, 1651-1671. https://doi.org/10.1002/(SICI)1097-0207(19991210)46:10<1651::AID-NME718>3.0.CO;2-2.
  32. MATLAB 7.1. (2006), The MathWorksInc, Natick, MA.
  33. Maurizio, A. (2014), Mechanics of Masonry Structures, Springer Wien Heidelberg New York Dordrecht London.
  34. Meftah, S.A., Daya, E.M. and Tounsi, A. (2012), "Finite element modelling of sandwich box column with viscoelastic layer for passive vibrations control under seismic loading", Thin Wall. Struct., 51, 174-185. https://doi.org/10.1016/j.tws.2011.10.015.
  35. Milani, G. (2011), "Kinematic FE limit analysis homogenization model for masonry walls reinforced with continuous FRP grids", Int. J. Solid. Struct., 48(2), 326-345. https://doi.org/10.1016/j.ijsolstr.2010.10.007.
  36. Milani, G. (2011), "Simple homogenization model for the nonlinear analysis of in-plane loaded masonry walls", Comput. Struct., 89, 1586-1601. https://doi.org/10.1016/j.compstruc.2011.05.004.
  37. Milani, G. (2011), "Simple lower bound limit analysis homogenization model for in- and out-of-plane loaded masonry walls", Constr. Build. Mater., 25, 4426-4443. https://doi.org/10.1016/j.conbuildmat.2011.01.012.
  38. Milani, G. and Cecchi, A. (2013), "Compatible model for herringbone bond masonry: linear elastic homogenization, failure surfaces and structural implementation", Int. J. Solid. Struct., 50(20-21), 3274-3296. https://doi.org/10.1016/j.ijsolstr.2013.05.032.
  39. Milani, G., Lourenco, P.B. and Tralli, A. (2006), "Homogenised limit analysis of masonry walls, Part I: Failure surfaces", Comput. Struct., 84(3-4), 166-180. https://doi.org/10.1016/j.compstruc.2005.09.005.
  40. Pande, G.N., Liang, J.X. and Middleton, J. (1989), "Equivalent elastic moduli for brick masonry", Compt. Geotech., 8, 243-265. https://doi.org/10.1016/0266-352X(89)90045-1.
  41. Parisi, F., Balestrieri, C. and Aprone, D. (2016), "Nonlinear micromechanical model for tuff masonry: Experimental validation and performance limit states", Constr. Build. Mater., 105, 165-175. https://doi.org/10.1016/j.conbuildmat.2015.12.078.
  42. Pietruszczak, S. and Niu, X. (1992), "A mathematical description of macroscopic behaviour of brick masonry", Int. J. Solid. Struct., 29(5), 531-546. https://doi.org/10.1016/0020-7683(92)90052-U.
  43. Reddy, J.N. (1984), "A simple Higher- Order Theory of laminated composite plate", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
  44. Saidi, H., Bousahla, A.A. and Tounsi, A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., 11(I2), 289-307. http://dx.doi.org/10.12989/gae.2016.11.2.289.
  45. Salamon, M.D.G. (1968), "Elastic moduli of a stratified rock mass", Int. J. Rock Mech. Min. Sci., 5, 519-527. https://doi.org/10.1016/0148-9062(68)90039-9.
  46. Stefanou, I., Sab, K. and Heck, J.V. (2015), "Three dimensional homogenization of masonry structures with building blocks of finite strength: A closed form strength domain", Int. J. Solid. Struct., 54, 258-270. https://doi.org/10.1016/j.ijsolstr.2014.10.007.
  47. Triantafillou, T.C. (1998), "Strengthening of masonry structures using epoxy bonded FRP laminates", J Compos Constr., 2(2), 96-104. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:2(96).
  48. Tumialan, J.G., Galati, N. and Nanni, A. (2003), "Fiber-reinforced polymer strengthening of unreinforced masonry walls subjected to out-of-plane loads", ACI Struct. J., 100(3), 321-329.
  49. Turco, V., Secondin, S., Morbin, A., Valluzzi, M.R. and Modena, C. (2006), "Flexural and shear strengthening of un-reinforced masonry with FRP bars", Compos. Sci. Technol., 66, 289-296. https://doi.org/10.1016/j.compscitech.2005.04.042.
  50. Valente, M. and Milani, G. (2016), "Seismic assessment of historical masonry towers by means of simplified approaches and standard FEM", Constr. Build. Mater., 108, 74-104. https://doi.org/10.1016/j.conbuildmat.2016.01.025.
  51. Youzera, H., Meftah, S.A. and Daya, E.M. (2017), "Superharmonic resonance of cross-ply laminates by the method of multiple scales", Comput. Nonlin. Dyn., 12, 0545031. https://doi.org/10.1115/1.4036914
  52. Youzera, H., Meftah, S.A., Challamel, N. and Tounsi, A. (2012), "Nonlinear damping and forced vibration analysis of laminated composite beams", Compos. Part B: Eng., 43(3), 1147-1154. https://doi.org/10.1016/j.compositesb.2012.01.008.
  53. Zhen, W. and Wanji, C. (2008), "An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams", Compos. Struct., 84, 337-349. https://doi.org/10.1016/j.compstruct.2007.10.005.
  54. Zucchini, A. and Lourenco, P.B. (2002), "A micro-mechanical model for the homogenisation of masonry", Int. J. Solid. Struct, 39, 3233-3255. https://doi.org/10.1016/S0020-7683(02)00230-5.