References
- Ardalan, R.B., Joshaghani, A. and Hooton, R.D. (2017), "Workability retention and compressive strength of self-compacting concrete incorporating pumice powder and silica fume", Constr. Build. Mater., 134, 116-122. https://doi.org/10.1016/j.conbuildmat.2016.12.090.
- Aruntas, H.Y. (2006), "Ucucu kullerin insaat sektorunde kullanim potansiyeli", Gazi U niversitesi Muhendislik-Mimarlik Fakultesi Dergisi, 21(1).
- ASTM C1585-13 (2013), Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic Cement Concrete, West Conshohocken, PA.
- ASTM C348 (2002), Standard Test Method for Flexural Strength of Hydraulic Cement Mortars, Annual book of ASTM Standards, USA.
- ASTM C349 (2002), Standard Test Method for Compressive Strength of Hyrauliccement Mortars (Using Portions of Prisms Broken in Flexure), Annual book of ASTM standards, USA.
- ASTM C642-13 (2013), Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.
- Ayati, B., Ferrandiz-Mas, V., Newport, D. and Cheeseman, C. (2018), "Use of clay in the manufacture of lightweight aggregate", Constr. Build. Mater., 162, 124-131. https://doi.org/10.1016/j.conbuildmat.2017.12.018.
- Benli, A., Karatas, M. and Sastim, M.V. (2017), "Influence of ground pumice powder on the bond behavior of reinforcement and mechanical properties of self-compacting mortars", Comput. Concrete, 20(3), 283-290. https://doi.org/10.12989/cac.2017.20.3.283.
- Bijen, J.M.J.M. (1986), "Manufacturing processes of artificial lightweight aggregates from fly ash", Int. J. Cement Compos. Lightwght. Concrete, 8(3), 191-199. https://doi.org/10.1016/0262-5075(86)90040-0.
- Binici, H., Kapur, S., Arocena, J. and Kaplan, H. (2012), "The sulphate resistance of cements containing red brick dust and ground basaltic pumice with sub-microscopic evidence of intra-pore gypsum and ettringite as strengtheners", Cement Concrete Compos., 34(2), 279-287. https://doi.org/10.1016/j.cemconcomp.2011.10.001.
- Binici, H., Temiz, H. and Kose, M.M. (2007), "The effect of fineness on the properties of the blended cements incorporating ground granulated blast furnace slag and ground basaltic pumice", Constr. Build. Mater., 21(5), 1122-1128. https://doi.org/10.1016/j.conbuildmat.2005.11.005.
- Celik, K., Meral, C., Mancio, M., Mehta, P.K. and Monteiro, P.J.M. (2014), "A comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash", Constr. Build. Mater., 67, 14-19. https://doi.org/10.1016/j.conbuildmat.2013.11.065.
- Cemalgil, S., Etli, S. and Onat, O. (2018), "Curing effect on mortar properties produced with styrene-butadiene rubber", Comput. Concrete, 21(6), 705-715. http://dx.doi.org/10.12989/cac.2018.21.6.705.
- EFNARC, Self-Compacting Concrete European Project Group. (2005), "The european guidelines for self-compacting concrete: Specification, production and use", International Bureau for Precast Concrete (BIBM).
- Etli, S., Cemalgil, S. and Onat, O. (2018), "Mid-Temperature Thermal Effects on Properties of Mortar Produced with Waste Rubber as Fine Aggregate", Int. J. Pure Appl. Sci. Technol., 4(1), 10-22. https://doi.org/10.12989/cac.2018.21.6.705.
- Etli, S., Cemalgil, S. and Onat, O. (2018), "Mid-Temperature Thermal Effects on Properties of Mortar Produced with Waste Rubber as Fine Aggregate", Int. J. Pure Appl. Sci. Technol., 4(1), 10-22. https://doi.org/10.29132/ijpas.341413.
- Galle, C. (2001), "Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry: a comparative study between oven-, vacuum-, and freeze-drying", Cement Concrete Res., 31(10), 1467-1477. https://doi.org/10.1016/S0008-8846(01)00594-4.
- Gesoglu, M., Guneyisi, E. and O z, H.O . (2012), "Properties of lightweight aggregates produced with cold-bonding pelletization of fly ash and ground granulated blast furnace slag", Mater. Struct., 45(10), 1535-1546. https://doi.org/10.1617/s11527-012-9855-9.
- Gonen, T., Onat, O., Cemalgil, S., Yilmazer, B. and Altuncu, Y.T. (2012), "A review on new waste materials for concrete technology", Elec. J. Constr. Technol., 8(1), 36-43.
- Granata, M.F. (2015), "Pumice powder as filler of self-compacting concrete", Constr. Build. Mater., 96, 581-590. https://doi.org/10.1016/j.conbuildmat.2015.08.040.
- Guneyisi, E., Gesoglu, M., Altan, I. and O z, H.O . (2015), "Utilization of cold bonded fly ash lightweight fine aggregates as a partial substitution of natural fine aggregate in selfcompacting mortars", Constr. Build. Mater., 74, 9-16. https://doi.org/10.1016/j.conbuildmat.2014.10.021.
- Guneyisi, E., Gesoglu, M., Ghanim, H., Ipek, S. and Taha, I. (2016), "Influence of the artificial lightweight aggregate on fresh properties and compressive strength of the self-compacting mortars", Constr. Build. Mater., 116, 151-158. http://dx.doi.org/10.1016/j.conbuildmat.2016.04.140.
- Hall, C (1989) "Water sorptivity of mortars and concretes-a review", Mag. Concrete Res., 41, 51-61. https://doi.org/10.1680/macr.1989.41.147.51.
- Kabay, N., Tufekci, M.M., Kizilkanat, A.B. and Oktay, D. (2015), "Properties of concrete with pumice powder and fly ash as cement replacement materials", Constr. Build. Mater., 85, 1-8. https://doi.org/10.1016/j.conbuildmat.2015.03.026.
- Karatas, M., Benli, A. and Ergin, A. (2017), "Influence of ground pumice powder on the mechanical properties and durability of self-compacting mortars", Constr. Build. Mater., 150, 467-479. https://doi.org/10.1016/j.conbuildmat.2017.05.220.
- Leung, H.Y., Kim, J., Nadeem, A., Jaganathan, J. and Anwar, M.P. (2016), "Sorptivity of self-compacting concrete containing fly ash and silica fume", Constr. Build. Mater., 113, 369-375. https://doi.org/10.1016/j.conbuildmat.2016.03.071.
- Mazloom, M. and Mahboubi, F. (2017), "Evaluating the settlement of lightweight coarse aggregate in self-compacting lightweight concrete", Comput. Concrete, 19(2), 203-210. https://doi.org/10.12989/cac.2017.19.2.203.
- Mehrinejad Khotbehsara, M., Mohseni, E., Ozbakkaloglu, T. and Ranjbar, M.M. (2017), "Durability characteristics of self-compacting concrete incorporating pumice and metakaolin", J. Mater. Civil Eng., 29(11), 04017218. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002068.
- Numan, H.A., Yaseen, M.H. and Al-Juboori, H.A. (2019), "Comparison mechanical properties of two types of light weight aggregate concrete", Civil Eng. J., 5(5), 1105-1118. http://dx.doi.org/10.28991/cej-2019-03091315.
- Numan, H.A., Yaseen, M.H. and Obed, A.H. (2018), "The influence of inclusion volcanic pumice on the concrete properties", Int. J. Civil Eng., 9(13).
- Onat, O. and Celik, E. (2017), "An integral based fuzzy approach to evaluate waste materials for concrete", Smart Struct. Syst., 19(3), 323-333. http://dx.doi.org/10.12989/sss.2017.19.3.323.
- Otsuki, N., Nagataki, S. and Nakashita, K. (1993), "Evaluation of the AgNO3 solution spray method for measurement of chloride penetration into hardened cementitious matrix materials", Constr. Build. Mater., 7(4), 195-201. https://doi.org/10.1016/0950-0618(93)90002-T.
- Rodriguez-Camacho, R.E. and Uribe-Afif, R. (2002), "Importance of using the natural pozzolans on concrete durability", Cement Concrete Res., 32(12), 1851-1858. https://doi.org/10.1016/S0008-8846(01)00714-1.
- Sahin, S., Orung, I., Okuroglu, M. and Karadutlu, Y. (2008), "Properties of prefabricated building materials produced from ground pumice aggregate and binders", Constr. Build. Mater., 22(5), 989-992. https://doi.org/10.1016/j.conbuildmat.2006.11.025.
- Senhadji, Y., Escadeillas, G., Mouli, M. and Khelafi, H.B. (2014), "Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar", Powder Technol., 254, 314-323. https://doi.org/10.1016/j.powtec.2014.01.046.
- Shaikh, F.U.A., Odoh, H. and Than, A.B. (2014), "Effect of nano silica on properties of concretes containing recycled coarse aggregates", Proc. Inst. Civil Eng.-Constr. Mater., 168(2), 68-76. https://doi.org/10.1680/coma.14.00009.
- Tang, P. and Brouwers, H.J.H. (2018), "The durability and environmental properties of self-compacting concrete incorporating cold bonded lightweight aggregates produced from combined industrial solid wastes", Constr. Build. Mater., 167, 271-285. https://doi.org/10.1016/j.conbuildmat.2018.02.035.
- Tekin, I., Birgul, R. and Aruntas, H.Y. (2012), "Determination of the effect of volcanic pumice replacement on macro void development for blended cement mortars by computerized tomography", Constr. Build. Mater., 35, 15-22. https://doi.org/10.1016/j.conbuildmat.2012.02.084.
- Torres, M.L. and Garcia-Ruiz, P.A. (2009), "Lightweight pozzolanic materials used in mortars: Evaluation of their influence on density, mechanical strength and water absorption", Cement Concrete Compos., 31(2), 114-119. https://doi.org/10.1016/j.cemconcomp.2008.11.003.
- Wu, T., Wei, H., Liu, X. and Xing, G. (2017), "Factors influencing the mechanical properties of lightweight aggregate concrete", Ind. J. Eng. Mater. Sci., 23, 301-311.
- Yang, C.C. and Huang, R. (1998), "Approximate strength of lightweight aggregate using micromechanics method", Adv. Cement Bas. Mater., 7(3-4), 133-138. https://doi.org/10.1016/S1065-7355(98)00002-9.