참고문헌
- Achen, C.H. (1982), Interpreting and Using Regression, Sage.
- Alam, I., Mahmood, A. and Khattak, N. (2015), "Use of rubber as aggregate in concrete: a review", Int. J. Adv. Struct. Geotech. Eng., 4(2), 2319-5347.
- Alshihri, M.M., Azmy, A.M. and El-Bisy, M.S. (2009), "Neural networks for predicting compressive strength of structural light weight concrete", Constr. Build. Mater., 23(6), 2214-2219. https://doi.org/10.1016/j.conbuildmat.2008.12.003.
- Aslani, F. (2015), "Mechanical properties of waste tire rubber concrete", J. Mater. Civil Eng., 28(3), 04015152. https://doi.org/10.1061/(asce)mt.1943-5533.0001429.
- Behnood, A. and Golafshani, E.M. (2018), "Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves", J. Clean. Prod., 202, 54-64. https://doi.org/10.1016/j.jclepro.2018.08.065.
- Bisht, K. and Ramana, P. (2017), "Evaluation of mechanical and durability properties of crumb rubber concrete", Constr. Build. Mater., 155, 811-817. https://doi.org/10.1016/j.conbuildmat.2017.08.131.
- Duarte, A.P., Silva, B.A., Silvestre, N., De Brito, J. and Julio, E. (2015), "Mechanical characterization of rubberized concrete using an image-processing/XFEM coupled procedure", Compos. Part B: Eng., 78, 214-226. https://doi.org/10.1016/j.compositesb.2015.03.082.
- Eldin, N. and Senouci, A. (1992), "Engineering properties of rubberized concrete", Can. J. Civil Eng., 19(5), 912-923. https://doi.org/10.1139/l92-103
- Emiroglu, M., Yildiz, S. and Kelestemur, M.H. (2015), "A study on dynamic modulus of self-consolidating rubberized concrete", Comput. Concrete, 15(5), 795-805. https://doi.org/10.12989/cac.2015.15.5.795.
- Fattuhi, N. and Clark, L. (1996), "Cement-based materials containing shredded scrap truck tyre rubber", Constr. Build. Mater., 10(4), 229-236. https://doi.org/10.1016/0950-0618(96)00004-9.
- Fedorov, S. (2013), GetData Graph Digitizer (2.26); GetData graph digitizer. www.getdata-graph-digitizer.com.
- Flood, I. and Kartam, N. (1994), "Neural networks in civil engineering I: principles and understanding", J. Comput. Civil Eng., 8(2), 131-148. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(131)
- Fu, C., Ye, H., Wang, K., Zhu, K. and He, C. (2019), "Evolution of mechanical properties of steel fiber-reinforced rubberized concrete (FR-RC)", Compos. Part B: Eng., 160, 158-166. https://doi.org/10.1016/j.compositesb.2018.10.045.
- Ganjian, E., Khorami, M. and Maghsoudi, A.A. (2009), "Scrap-tyre-rubber replacement for aggregate and filler in concrete", Constr. Build. Mater., 23(5), 1828-1836. https://doi.org/10.1016/j.conbuildmat.2008.09.020.
- Gheni, A.A., ElGawady, M.A. and Myers, J.J. (2017), "Mechanical characterization of concrete masonry units manufactured with crumb rubber aggregate", ACI Mater. J., 114(1), 65. https://doi.org/10.14359/51689482.
- Guneyisi, E., Gesoglu, M. and Ozturan, T. (2004), "Properties of rubberized concretes containing silica fume", Cement Concrete Res., 34(12), 2309-2317. https://doi.org/10.1016/j.cemconres.2004.04.005.
- Gupta, T., Chaudhary, S. and Sharma, R.K. (2014), "Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate", Constr. Build. Mater., 73, 562-574. https://doi.org/10.1016/j.conbuildmat.2014.09.102.
- Gupta, T., Chaudhary, S. and Sharma, R.K. (2016), "Mechanical and durability properties of waste rubber fiber concrete with and without silica fume", J. Clean. Prod., 112, 702-711. https://doi.org/10.1016/j.jclepro.2015.07.081.
- Gurunandan, M., Phalgun, M., Raghavendra, T. and Udayashankar, B.C. (2019), "Mechanical and damping properties of rubberized concrete containing polyester fibers", J. Mater. Civil Eng., 31(2), 04018395. https://doi.org/10.1061/(asce)mt.1943-5533.0002614.
- Habib, A., Yidirim, U. and Eren, O. (2020b), "Column repair and strengthening using RC jacketing: a brief state-of-the-art review", Innov. Infrastr. Solut., 5(3), 1-11. https://doi.org/10.1007/s41062-020-00329-4.
- Habib, A., Yildirim, U. and Eren, O. (2020a), "Mechanical and dynamic properties of high strength concrete with well graded coarse and fine tire rubber", Constr. Build. Mater., 246, 118502. https://doi.org/10.1016/j.conbuildmat.2020.118502.
- Hagan, M.T. and Menhaj, M.B. (1994), "Training feedforward networks with the Marquardt algorithm", IEEE Tran. Neur. Network., 5(6), 989-993. https://doi.org/10.1109/72.329697.
- Hammoudi, A., Moussaceb, K., Belebchouche, C. and Dahmoune, F. (2019), "Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates", Constr. Build. Mater., 209, 425-436. https://doi.org/10.1016/j.conbuildmat.2019.03.119.
- Jalal, M., Grasley, Z., Nassir, N. and Jalal, H. (2020), "Strength and dynamic elasticity modulus of rubberized concrete designed with ANFIS modeling and ultrasonic technique", Constr. Build. Mater., 240, 117920. https://doi.org/10.1016/j.conbuildmat.2019.117920.
- Khatib, Z. and Bayomy, F. (1999), "Rubberized portland cement concrete", J. Mater. Civil Eng., 11(3), 206-213. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206)
- Li, D., Mills, J., Benn, T., Ma, X., Gravina, R. and Zhuge, Y. (2016), "Review of the performance of high-strength rubberized concrete and its potential structural applications", Adv. Civil Eng. Mater., 5(1), 149-166.
- Li, N., Long, G., Ma, C., Fu, Q., Zeng, X., Ma, K., Xie, Y. and Luo, B. (2019), "Properties of self-compacting concrete (SCC) with recycled tire rubber aggregate: a comprehensive study", J. Clean. Prod., 236, 117707. https://doi.org/10.1016/j.jclepro.2019.117707.
- Marquardt, D.W. (1963), "An algorithm for least-squares estimation of nonlinear parameters", J. Soc. Indus. Appl. Math., 11(2), 431-441. https://doi.org/10.1137/0111030
- Montgomery, D.C. (2012), Design and Analysis of Experiments, John Wiley and Sons.
- Montgomery, D.C., Peck, E.A. and Vining, G.G. (2012), Introduction to Linear Regression Analysis, John Wiley & Sons.
- Moustafa, A. and ElGawady, M. (2015), "Damping properties of high strength concrete with scrap tire rubber", 5th International Conference on Construction Materials (ConMat): Performance, Innovations and Structural Implications, Whistler, BC, Canada.
- Moustafa, A. and ElGawady, M.A. (2015), "Mechanical properties of high strength concrete with scrap tire rubber" Constr. Build. Mater., 93, 249-256. https://doi.org/10.1016/j.conbuildmat.2015.05.115.
- Moustafa, A. and ElGawady, M.A. (2017), "Dynamic properties of high strength rubberized concrete", ACI Spec. Publ., 314, 1-22.
- Najim, K. and Hall, M. (2010), "A review of the fresh/hardened properties and applications for plain- (PRC) and selfcompacting rubberised concrete (SCRC)", Constr. Build. Mater., 24(11), 2043-2051. https://doi.org/10.1016/j.conbuildmat.2010.04.056.
- Najim, K.B. and Hall, M.R. (2012), "Mechanical and dynamic properties of self-compacting crumb rubber modified concrete", Constr. Build. Mater., 27(1), 521-530. https://doi.org/10.1016/j.conbuildmat.2011.07.013.
- Noaman, A.T., Abu Bakar, B.H. and Md. Akil, H. (2017), "Investigation on the mechanical properties of rubberized steel fiber concrete", Eng. Struct. Technol., 9(2), 79-92. https://doi.org/10.3846/2029882x.2017.1309301
- Olive, D.J. (2010), Multiple Linear and 1D Regression.
- Onuaguluchi, O. and Panesar, D. (2014), "Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume", J. Clean. Prod., 82, 125-131. https://doi.org/10.1016/j.jclepro.2014.06.068.
- Pelisser, F., Zavarise, N., Longo, T. and Bernardin, A. (2011), "Concrete made with recycled tire rubber: effect of alkaline activation and silica fume addition", J. Clean. Prod., 19(6-7), 757-763. https://doi.org/10.1016/j.jclepro.2010.11.014.
- Prasad, B.R., Eskandari, H and Reddy, B.V. (2009), "Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN", Constr. Build. Mater., 23(1), 117-128. https://doi.org/10.1016/j.conbuildmat.2008.01.014.
- Siddika, A., Al Mamun, M.A., Alyousef, R., Amran, Y.M., Aslani, F. and Alabduljabbar, H. (2019), "Properties and utilizations of waste tire rubber in concrete: A review", Constr. Build. Mater., 224, 711-731. https://doi.org/10.1016/j.wasman.2004.01.006.
- Skripkiunas, G., Grinys, A. and Cernius, B. (2007), "Deformation properties of concrete with rubber waste additives", Materials Science (Medziagotyra), 13(3), 219-223.
- Skripkiunas, G., Grinys, A. and Miskinis, K. (2009), "Damping properties of concrete with rubber waste additives", Materials Science (Medziagotyra), 15(3), 266-272.
- Su, H., Yang, J., Ling, T.C., Ghataora, G.S. and Dirar, S. (2015), "Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes", J. Clean. Prod., 91, 288-296. https://doi.org/10.1016/j.jclepro.2014.12.022.
- Thomas, B.S and Gupta, R.C. (2016b), A comprehensive review on the applications of waste tire rubber in cement concrete, Renew. Sustain. Energy Rev., 54, 1323-1333. https://doi.org/10.1016/j.rser.2015.10.092.
- Thomas, B.S. and Gupta, R.C. (2016a), "Properties of high strength concrete containing scrap tire rubber", J. Clean. Prod., 113, 86-92. https://doi.org/10.1016/j.jclepro.2015.11.019.
- Topcu, I.B. and Saridemir, M. (2007), "Prediction of properties of waste AAC aggregate concrete using artificial neural network", Comput. Mater. Sci., 41(1), 117-125. https://doi.org/10.1016/j.commatsci.2007.03.010.
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2008.07.031.
- Xue, J. and Shinozuka, M. (2013), "Rubberized concrete: A green structural material with enhanced energy-dissipation capability", Constr. Build. Mater., 42, 196-204. https://doi.org/10.1016/j.conbuildmat.2013.01.005.
- Youssf, O., ElGawady, M.A., Mills, J.E. and Ma, X. (2014), "An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes", Constr. Build. Mater., 53, 522-532. https://doi.org/10.1016/j.conbuildmat.2013.12.007.
- Yung, W., Yung, L. and Hua, L. (2013), "A study of the durability properties of waste tire rubber applied to self-compacting concrete", Constr. Build. Mater., 41, 665-672. https://doi.org/10.1016/j.conbuildmat.2012.11.019.
- Zheng, L., Huo, X. and Yuan, Y. (2008a), "Strength, modulus of elasticity, and brittleness index of rubberized concrete", J. Mater. Civil Eng., 20(11), 692-699. https://doi.org/10.1061/(asce)0899-1561(2008)20:11(692).
- Zheng, L., Huo, X.S. and Yuan, Y. (2008b), "Experimental investigation on dynamic properties of rubberized concrete", Constr. Build. Mater., 22(5), 939-947. https://doi.org/10.1016/j.conbuildmat.2007.03.005.