DOI QR코드

DOI QR Code

Prediction of the dynamic properties in rubberized concrete

  • Habib, Ahed (Department of Civil Engineering, Eastern Mediterranean University) ;
  • Yildirim, Umut (Department of Civil Engineering, Eastern Mediterranean University)
  • 투고 : 2020.09.02
  • 심사 : 2021.01.26
  • 발행 : 2021.03.25

초록

Throughout the previous years, many efforts focused on incorporating non-biodegradable wastes as a partial replacement and sustainable alternative for natural aggregates in cement-based materials. Currently, rubberized concrete is considered one of the most important green concrete materials produced by replacing natural aggregates with rubber particles from old tires in a concrete mixture. The main benefits of this material, in addition to its importance in sustainability and waste management, comes from the ability of rubber to considerably damp vibrations, which, when used in reinforced concrete structures, can significantly enhance its energy dissipation and vibration behavior. Nowadays, the literature has many experimental findings that provide an interesting view of rubberized concrete's dynamic behavior. On the other hand, it still lacks research that collects, interprets, and numerically investigates these findings to provide some correlations and construct reliable prediction models for rubberized concrete's dynamic properties. Therefore, this study is intended to propose prediction approaches for the dynamic properties of rubberized concrete. As a part of the study, multiple linear regression and artificial neural networks will be used to create prediction models for dynamic modulus of elasticity, damping ratio, and natural frequency.

키워드

참고문헌

  1. Achen, C.H. (1982), Interpreting and Using Regression, Sage.
  2. Alam, I., Mahmood, A. and Khattak, N. (2015), "Use of rubber as aggregate in concrete: a review", Int. J. Adv. Struct. Geotech. Eng., 4(2), 2319-5347.
  3. Alshihri, M.M., Azmy, A.M. and El-Bisy, M.S. (2009), "Neural networks for predicting compressive strength of structural light weight concrete", Constr. Build. Mater., 23(6), 2214-2219. https://doi.org/10.1016/j.conbuildmat.2008.12.003.
  4. Aslani, F. (2015), "Mechanical properties of waste tire rubber concrete", J. Mater. Civil Eng., 28(3), 04015152. https://doi.org/10.1061/(asce)mt.1943-5533.0001429.
  5. Behnood, A. and Golafshani, E.M. (2018), "Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves", J. Clean. Prod., 202, 54-64. https://doi.org/10.1016/j.jclepro.2018.08.065.
  6. Bisht, K. and Ramana, P. (2017), "Evaluation of mechanical and durability properties of crumb rubber concrete", Constr. Build. Mater., 155, 811-817. https://doi.org/10.1016/j.conbuildmat.2017.08.131.
  7. Duarte, A.P., Silva, B.A., Silvestre, N., De Brito, J. and Julio, E. (2015), "Mechanical characterization of rubberized concrete using an image-processing/XFEM coupled procedure", Compos. Part B: Eng., 78, 214-226. https://doi.org/10.1016/j.compositesb.2015.03.082.
  8. Eldin, N. and Senouci, A. (1992), "Engineering properties of rubberized concrete", Can. J. Civil Eng., 19(5), 912-923. https://doi.org/10.1139/l92-103
  9. Emiroglu, M., Yildiz, S. and Kelestemur, M.H. (2015), "A study on dynamic modulus of self-consolidating rubberized concrete", Comput. Concrete, 15(5), 795-805. https://doi.org/10.12989/cac.2015.15.5.795.
  10. Fattuhi, N. and Clark, L. (1996), "Cement-based materials containing shredded scrap truck tyre rubber", Constr. Build. Mater., 10(4), 229-236. https://doi.org/10.1016/0950-0618(96)00004-9.
  11. Fedorov, S. (2013), GetData Graph Digitizer (2.26); GetData graph digitizer. www.getdata-graph-digitizer.com.
  12. Flood, I. and Kartam, N. (1994), "Neural networks in civil engineering I: principles and understanding", J. Comput. Civil Eng., 8(2), 131-148. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(131)
  13. Fu, C., Ye, H., Wang, K., Zhu, K. and He, C. (2019), "Evolution of mechanical properties of steel fiber-reinforced rubberized concrete (FR-RC)", Compos. Part B: Eng., 160, 158-166. https://doi.org/10.1016/j.compositesb.2018.10.045.
  14. Ganjian, E., Khorami, M. and Maghsoudi, A.A. (2009), "Scrap-tyre-rubber replacement for aggregate and filler in concrete", Constr. Build. Mater., 23(5), 1828-1836. https://doi.org/10.1016/j.conbuildmat.2008.09.020.
  15. Gheni, A.A., ElGawady, M.A. and Myers, J.J. (2017), "Mechanical characterization of concrete masonry units manufactured with crumb rubber aggregate", ACI Mater. J., 114(1), 65. https://doi.org/10.14359/51689482.
  16. Guneyisi, E., Gesoglu, M. and Ozturan, T. (2004), "Properties of rubberized concretes containing silica fume", Cement Concrete Res., 34(12), 2309-2317. https://doi.org/10.1016/j.cemconres.2004.04.005.
  17. Gupta, T., Chaudhary, S. and Sharma, R.K. (2014), "Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate", Constr. Build. Mater., 73, 562-574. https://doi.org/10.1016/j.conbuildmat.2014.09.102.
  18. Gupta, T., Chaudhary, S. and Sharma, R.K. (2016), "Mechanical and durability properties of waste rubber fiber concrete with and without silica fume", J. Clean. Prod., 112, 702-711. https://doi.org/10.1016/j.jclepro.2015.07.081.
  19. Gurunandan, M., Phalgun, M., Raghavendra, T. and Udayashankar, B.C. (2019), "Mechanical and damping properties of rubberized concrete containing polyester fibers", J. Mater. Civil Eng., 31(2), 04018395. https://doi.org/10.1061/(asce)mt.1943-5533.0002614.
  20. Habib, A., Yidirim, U. and Eren, O. (2020b), "Column repair and strengthening using RC jacketing: a brief state-of-the-art review", Innov. Infrastr. Solut., 5(3), 1-11. https://doi.org/10.1007/s41062-020-00329-4.
  21. Habib, A., Yildirim, U. and Eren, O. (2020a), "Mechanical and dynamic properties of high strength concrete with well graded coarse and fine tire rubber", Constr. Build. Mater., 246, 118502. https://doi.org/10.1016/j.conbuildmat.2020.118502.
  22. Hagan, M.T. and Menhaj, M.B. (1994), "Training feedforward networks with the Marquardt algorithm", IEEE Tran. Neur. Network., 5(6), 989-993. https://doi.org/10.1109/72.329697.
  23. Hammoudi, A., Moussaceb, K., Belebchouche, C. and Dahmoune, F. (2019), "Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates", Constr. Build. Mater., 209, 425-436. https://doi.org/10.1016/j.conbuildmat.2019.03.119.
  24. Jalal, M., Grasley, Z., Nassir, N. and Jalal, H. (2020), "Strength and dynamic elasticity modulus of rubberized concrete designed with ANFIS modeling and ultrasonic technique", Constr. Build. Mater., 240, 117920. https://doi.org/10.1016/j.conbuildmat.2019.117920.
  25. Khatib, Z. and Bayomy, F. (1999), "Rubberized portland cement concrete", J. Mater. Civil Eng., 11(3), 206-213. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206)
  26. Li, D., Mills, J., Benn, T., Ma, X., Gravina, R. and Zhuge, Y. (2016), "Review of the performance of high-strength rubberized concrete and its potential structural applications", Adv. Civil Eng. Mater., 5(1), 149-166.
  27. Li, N., Long, G., Ma, C., Fu, Q., Zeng, X., Ma, K., Xie, Y. and Luo, B. (2019), "Properties of self-compacting concrete (SCC) with recycled tire rubber aggregate: a comprehensive study", J. Clean. Prod., 236, 117707. https://doi.org/10.1016/j.jclepro.2019.117707.
  28. Marquardt, D.W. (1963), "An algorithm for least-squares estimation of nonlinear parameters", J. Soc. Indus. Appl. Math., 11(2), 431-441. https://doi.org/10.1137/0111030
  29. Montgomery, D.C. (2012), Design and Analysis of Experiments, John Wiley and Sons.
  30. Montgomery, D.C., Peck, E.A. and Vining, G.G. (2012), Introduction to Linear Regression Analysis, John Wiley & Sons.
  31. Moustafa, A. and ElGawady, M. (2015), "Damping properties of high strength concrete with scrap tire rubber", 5th International Conference on Construction Materials (ConMat): Performance, Innovations and Structural Implications, Whistler, BC, Canada.
  32. Moustafa, A. and ElGawady, M.A. (2015), "Mechanical properties of high strength concrete with scrap tire rubber" Constr. Build. Mater., 93, 249-256. https://doi.org/10.1016/j.conbuildmat.2015.05.115.
  33. Moustafa, A. and ElGawady, M.A. (2017), "Dynamic properties of high strength rubberized concrete", ACI Spec. Publ., 314, 1-22.
  34. Najim, K. and Hall, M. (2010), "A review of the fresh/hardened properties and applications for plain- (PRC) and selfcompacting rubberised concrete (SCRC)", Constr. Build. Mater., 24(11), 2043-2051. https://doi.org/10.1016/j.conbuildmat.2010.04.056.
  35. Najim, K.B. and Hall, M.R. (2012), "Mechanical and dynamic properties of self-compacting crumb rubber modified concrete", Constr. Build. Mater., 27(1), 521-530. https://doi.org/10.1016/j.conbuildmat.2011.07.013.
  36. Noaman, A.T., Abu Bakar, B.H. and Md. Akil, H. (2017), "Investigation on the mechanical properties of rubberized steel fiber concrete", Eng. Struct. Technol., 9(2), 79-92. https://doi.org/10.3846/2029882x.2017.1309301
  37. Olive, D.J. (2010), Multiple Linear and 1D Regression.
  38. Onuaguluchi, O. and Panesar, D. (2014), "Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume", J. Clean. Prod., 82, 125-131. https://doi.org/10.1016/j.jclepro.2014.06.068.
  39. Pelisser, F., Zavarise, N., Longo, T. and Bernardin, A. (2011), "Concrete made with recycled tire rubber: effect of alkaline activation and silica fume addition", J. Clean. Prod., 19(6-7), 757-763. https://doi.org/10.1016/j.jclepro.2010.11.014.
  40. Prasad, B.R., Eskandari, H and Reddy, B.V. (2009), "Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN", Constr. Build. Mater., 23(1), 117-128. https://doi.org/10.1016/j.conbuildmat.2008.01.014.
  41. Siddika, A., Al Mamun, M.A., Alyousef, R., Amran, Y.M., Aslani, F. and Alabduljabbar, H. (2019), "Properties and utilizations of waste tire rubber in concrete: A review", Constr. Build. Mater., 224, 711-731. https://doi.org/10.1016/j.wasman.2004.01.006.
  42. Skripkiunas, G., Grinys, A. and Cernius, B. (2007), "Deformation properties of concrete with rubber waste additives", Materials Science (Medziagotyra), 13(3), 219-223.
  43. Skripkiunas, G., Grinys, A. and Miskinis, K. (2009), "Damping properties of concrete with rubber waste additives", Materials Science (Medziagotyra), 15(3), 266-272.
  44. Su, H., Yang, J., Ling, T.C., Ghataora, G.S. and Dirar, S. (2015), "Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes", J. Clean. Prod., 91, 288-296. https://doi.org/10.1016/j.jclepro.2014.12.022.
  45. Thomas, B.S and Gupta, R.C. (2016b), A comprehensive review on the applications of waste tire rubber in cement concrete, Renew. Sustain. Energy Rev., 54, 1323-1333. https://doi.org/10.1016/j.rser.2015.10.092.
  46. Thomas, B.S. and Gupta, R.C. (2016a), "Properties of high strength concrete containing scrap tire rubber", J. Clean. Prod., 113, 86-92. https://doi.org/10.1016/j.jclepro.2015.11.019.
  47. Topcu, I.B. and Saridemir, M. (2007), "Prediction of properties of waste AAC aggregate concrete using artificial neural network", Comput. Mater. Sci., 41(1), 117-125. https://doi.org/10.1016/j.commatsci.2007.03.010.
  48. Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2008.07.031.
  49. Xue, J. and Shinozuka, M. (2013), "Rubberized concrete: A green structural material with enhanced energy-dissipation capability", Constr. Build. Mater., 42, 196-204. https://doi.org/10.1016/j.conbuildmat.2013.01.005.
  50. Youssf, O., ElGawady, M.A., Mills, J.E. and Ma, X. (2014), "An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes", Constr. Build. Mater., 53, 522-532. https://doi.org/10.1016/j.conbuildmat.2013.12.007.
  51. Yung, W., Yung, L. and Hua, L. (2013), "A study of the durability properties of waste tire rubber applied to self-compacting concrete", Constr. Build. Mater., 41, 665-672. https://doi.org/10.1016/j.conbuildmat.2012.11.019.
  52. Zheng, L., Huo, X. and Yuan, Y. (2008a), "Strength, modulus of elasticity, and brittleness index of rubberized concrete", J. Mater. Civil Eng., 20(11), 692-699. https://doi.org/10.1061/(asce)0899-1561(2008)20:11(692).
  53. Zheng, L., Huo, X.S. and Yuan, Y. (2008b), "Experimental investigation on dynamic properties of rubberized concrete", Constr. Build. Mater., 22(5), 939-947. https://doi.org/10.1016/j.conbuildmat.2007.03.005.