References
- Bagha, A.K. and Bahl, S. (2020), "Finite element analysis of VGCF/pp reinforced square representative volume element to predict its mechanical properties for different loadings", Mater. Today: Proceed.. https://doi.org/10.1016/j.matpr.2020.06.108.
- Bahl, S. (2020), "Axisymmetric finite element analysis of single fiber push-out test for stainless steel wire reinforced aluminum matrix composites", Mater. Today: Proceed., 28, 1605-1611. https://doi.org/10.1016/j.matpr.2020.06.108.
- Bahl, S. and Bagha, A.K. (2020), "Finite element modeling and simulation of the fiber-matrix interface in fiber reinforced metal matrix composites", Mater. Today: Proceed.. https://doi.org/10.1016/j.matpr.2020.06.108.
- Feng, Q.P., Deng, Y.H., Xiao, H.M., Liu, Y., Qu, C.B., Zhao, Y. and Fu, S.Y. (2014), "Enhanced cryogenic interfacial normal bond property between carbon fibers and epoxy matrix by carbon nanotubes", Compos. Sci. Technol., 104, 59-65. https://doi.org/10.1016/j.compscitech.2014.09.006.
- Ferrari, V.J., de Hanai, J.B. and de Souza, R.A. (2013), "Flexural strengthening of reinforcement concrete beams using high performance fiber reinforcement cement-based composite (HPFRCC) and carbon fiber reinforced polymers (CFRP)", Constr. Build. Mater., 48, 485-498. https://doi.org/10.1016/j.compscitech.2014.09.006.
- Gamino, A.L., Bittencourt, T.N. and de Oliveira e Sousa, J.L.A. (2009), "Finite element computational modeling of externally bonded CFRP composites flexural behavior in RC beams", Comput. Concrete, 6(3), 187-202. https://doi.org/10.12989/cac.2009.6.3.187.
- Haddad, R.H. (2016), "Hybrid repair configurations with CFRP composites for recovering structural performance of steel-corroded beams", Constr. Build. Mater., 124, 508-518. https://doi.org/10.1016/j.conbuildmat.2016.07.124.
- Hawileh, R.A., Musto, H.A., Abdalla, J.A. and Naser, M.Z. (2019), "Finite element modeling of reinforced concrete beams externally strengthened in flexure with side-bonded FRP laminates", Compos. Part B: Eng., 173, 106952. https://doi.org/10.1016/j.compositesb.2019.106952.
- Hognestad, E., Hanson, N.W. and McHenry, D. (1955), "Concrete stress distribution in ultimate strength design", J. Proceed., 52(12), 455-480.
- Irshidat, M.R. and Al-Saleh, M.H. (2016), "Effect of using carbon nanotube modified epoxy on bond-slip behavior between concrete and FRP sheets", Constr. Build. Mater., 105, 511-518. https://doi.org/10.1016/j.conbuildmat.2015.12.183.
- Irshidat, M.R. and Al-Saleh, M.H. (2017a), "Flexural strength recovery of heat-damaged RC beams using carbon nanotubes modified CFRP", Constr. Build. Mater., 145, 474-482. https://doi.org/10.1016/j.conbuildmat.2017.04.047.
- Irshidat, M.R. and Al-Saleh, M.H. (2017b), "Repair of heat-damaged RC columns using carbon nanotubes modified CFRP", Mater. Struct., 50(2), 162. https://doi.org/10.1617/s11527-017-1034-6.
- Irshidat, M.R., Al-Saleh, M.H. and Al-Shoubaki, M. (2015), "Using carbon nanotubes to improve strengthening efficiency of carbon fiber/epoxy composites confined RC columns", Compos. Struct., 134, 523-532. https://doi.org/10.1617/s11527-017-1034-6.
- Irshidat, M.R., Al-Saleh, M.H. and Almashagbeh, H. (2016), "Effect of carbon nanotubes on strengthening of RC beams retrofitted with carbon fiber/epoxy composites", Mater. Des., 89, 225-234. https://doi.org/10.1617/s11527-017-1034-6.
- Kabir, M.I., Subhani, M., Shrestha, R. and Samali, B. (2018), "Experimental and theoretical analysis of severely damaged concrete beams strengthened with CFRP", Constr. Build. Mater., 178, 161-174. https://doi.org/10.1016/j.conbuildmat.2018.05.038.
- Kharitonov, A.P., Tkachev, A.G., Blohin, A.N., Dyachkova, T.P., Kobzev, D.E., Maksimkin, A.V., ... & Alekseiko, L.N. (2016), "Reinforcement of Bisphenol-F epoxy resin composites with fluorinated carbon nanotubes", Compos. Sci. Technol., 134, 161-167. https://doi.org/10.1016/j.compscitech.2016.08.017.
- Kim, N., Shin, Y.S., Choi, E. and Kim, H.S. (2015), "Relationships between interfacial shear stresses and moment capacities of RC beams strengthened with various types of FRP sheets", Constr. Build. Mater., 93, 1170-1179. https://doi.org/10.1016/j.compscitech.2016.08.017.
- Kim, S. and Aboutaha, R.S. (2004), "Finite element analysis of carbon fiber-reinforcedrnpolymer (CFRP) strengthened reinforced concrete beams", Comput. Concrete, 1(4), 401-416. http://dx.doi.org/10.12989/cac.2004.1.4.401.
- Korayem, A.H., Barati, M.R., Simon, G.P., Zhao, X.L. and Duan, W.H. (2014), "Reinforcing brittle and ductile epoxy matrices using carbon nanotubes masterbatch", Compos. Part A: Appl. Sci. Manuf., 61, 126-133. https://doi.org/10.1016/j.compositesa.2014.02.016.
- Kumar Bagha, A. and Bahl, S. (2020), "Strain energy and finite element analysis to predict the mechanical properties of vapor grown carbon fiber reinforced polypropylene nanocomposites", Mater. Today: Proceed.. https://doi.org/10.1016/j.matpr.2020.09.034.
- Kumar Saini, M., Kumar Bagha, A., Kumar, S. and Bahl, S. (2020), "Finite element analysis for predicting the vibration characteristics of natural fiber reinforced epoxy composites", Mater. Today: Proceed.. https://doi.org/10.1016/j.matpr.2020.08.717.
- Li, M., Gu, Y., Liu, Y., Li, Y. and Zhang, Z. (2013), "Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers", Carbon, 52, 109-121. https://doi.org/10.1016/j.carbon.2012.09.011.
- Liang, J.F., Yu, D. and Yu, B. (2016), "Flexural behavior of concrete beams reinforced with CFRP prestressed prisms", Comput. Concrete, 17(3), 295-304. https://doi.org/10.12989/cac.2016.17.3.295.
- Lu, X.Z., Teng, J.G., Ye, L.P. and Jiang, J.J. (2005), "Bond-slip models for FRP sheets/plates bonded to concrete", Eng. Struct., 27(6), 920-937. https://doi.org/10.1016/j.engstruct.2005.01.014.
- Naser, M.Z., Hawileh, R.A. and Abdalla, J.A. (2019), "Fiberreinforced polymer composites in strengthening reinforced concrete structures: A critical review", Eng. Struct., 198, 109542. https://doi.org/10.1016/j.engstruct.2019.109542.
- Numerical Prediction of Bond-Slip Behavior in Simple Pull-Out Concrete Specimens. (n.d.). https://www.iasj.net/iasj?func=article&aId=63890. Accessed 12 November 2019.
- Obaidat, Y.T., Heyden, S. and Dahlblom, O. (2010), "The effect of CFRP and CFRP/concrete interface models when modelling retrofitted RC beams with FEM", Compos. Struct., 92(6), 1391-1398. https://doi.org/10.1016/j.compstruct.2009.11.008.
- Rousakis, T.C., Kouravelou, K.B. and Karachalios, T.K. (2014), "Effects of carbon nanotube enrichment of epoxy resins on hybrid FRP-FR confinement of concrete", Compos. Part B: Eng., 57, 210-218. https://doi.org/10.1016/j.compositesb.2013.09.044.
- Soliman, E., Kandil, U.F. and Reda Taha, M. (2012), "Limiting shear creep of epoxy adhesive at the FRP-concrete interface using multi-walled carbon nanotubes", Int. J. Adhes. Adhesiv., 33, 36-44. https://doi.org/10.1016/j.ijadhadh.2011.09.006.
- Stoner, J.G. and Polak, M.A. (2020), "Finite element modelling of GFRP reinforced concrete beams", Comput. Concrete, 25(4), 369-382. https://doi.org/10.12989/cac.2020.25.4.369.
- Willam, K.J. (1975), "Constitutive model for the triaxial behaviour of concrete", Proc. Intl. Assoc. Bridge Structl. Engrs, 19, 1-30.
- Xue, W., Tan, Y. and Zeng, L. (2010), "Flexural response predictions of reinforced concrete beams strengthened with prestressed CFRP plates", Compos. Struct., 92(3), 612-622. https://doi.org/10.1016/j.compstruct.2009.09.036.