참고문헌
- Asadizadeh, M. and Rezaei, M. (2019c), "Surveying the mechanical response of non-persistent jointed slabs subjected to compressive axial loading utilising GEP approach", Int. J. Geotech. Eng., 33, 1-13. https://doi.org/10.1080/19386362.2019.1596610.
- Asadizadeh, M., Hossaini, M.F., Moosavi, M., Masoumi, H. and Ranjith, P.G. (2019b), "Mechanical characterisation of jointed rock-like material with non- persistent rough joints subjected to uniaxial compression", Eng. Geol., 260, 105224. https://doi.org/10.1016/j.enggeo.2019.105224.
- Asadizadeh, M., Masoumi, H., Roshan, H. and Hedayat, A. (2019a), "Coupling Taguchi and response surface methodologies for the efficient characterization of jointed rocks' mechanical properties", Rock Mech. Rock Eng., 52(11), 4807-4819. https://doi.org/10.1007/s00603-019-01853-1.
- Asadizadeh, M., Moosavi, M., Hossaini, M. and Masoumi, H. (2018), "Shear strength and cracking process of non-persistent jointed rocks: An extensive experimental investigation", Rock Mech. Rock Eng., 51, 415-428. https://doi.org/10.1007/s00603-017-1328-6.
- Babanouri, N., Asadizadeh, M. and Hasan-Alizade, Z. (2020), "Modeling shear behavior of rock joints: A focus on interaction of influencing parameters", Int. J. Rock Mech. Min. Sci., 134, 104449. https://doi.org/10.1016/j.ijrmms.2020.104449.
- Bahaaddini, M., Sharrock, G. and Hebblewhite, B. (2013), "Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression", Comput. Geotech., 49, 206-225. https://doi.org/10.1016/j.compgeo.2012.10.012.
- Bobet, A (2000), "The initiation of secondary cracks in compression", Eng. Fract. Mech., 66, 187-219. https://doi.org/10.1016/S0013-7944(00)00009-6.
- Bobet, A. and Einstein, H. (1998), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35, 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9.
- Brace, W. and Byerlee, J. (1996), "Recent experimental studies of brittle fracture of rocks", Proceedings of the 8th US Symposium on Rock Mechanics, Minneapolis, MN, September.
- Cao, P., Liu, T., Pu, C. and Lin, H. (2015), "Crack propagation and coalescence of brittle rock-like specimens with preexisting cracks in compression", Eng. Geol., 187(17), 113-121. https://doi.org/10.1016/j.enggeo.2014.12.010.
- Cao, R. and Yao, R. (2020), "Failure mechanism of non-persistent jointed rock-like specimens under uniaxial loading: Laboratory testing", Int. J. Rock Mech. Min. Sci., 132, 10434. https://doi.org/10.1016/j.ijrmms.2020.104341.
- Chen, X., Liao, Z. and Peng, X. (2013), "Cracking process of rock mass models under uniaxial compression", J. Cent. South Univ., 20, 1661-1678. https://doi.org/10.1007/s11771-013-1660-2.
- Gehle, C. and Kutter, H. (2003), "Breakage and shear behaviour of intermittent rock joints", Int. J. Rock Mech. Min. Sci., 40, 687-700. https://doi.org/10.1016/S1365-1609(03)00060-1.
- Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2.
- Haeri, H. and Sarfarazi, V. (2016a), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-112. http://dx.doi.org/10.12989/cac.2016.17.1.107.
- Haeri, H. and Sarfarazi, V. (2016b), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. http://dx.doi.org/10.12989/cac.2016.17.6.723.
- Haeri, H. and Sarfarazi, V. (2016c), "The deformable multilaminate for predicting the elasto-plastic behavior of rocks", Comput. Concrete, 18, 201-214. https://doi.org/10.12989/cac.2016.18.2.201.
- Haeri, H., Sarfarazi, V. and Lazemi, H.A. (2016d), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. http://dx.doi.org/10.12989/cac.2016.17.5.649.
- Hoek, E. and Bieniawski, Z. (1984), "Brittle fraeture propagation in rock under compression", Int. J. Fract., 26, 276-294. https://doi.org/10.1007/BF00186851.
- Hu, J. and Wen, G. (2020), "Mechanical properties and crack evolution of double-layer composite rock-like specimens with two parallel fissures under uniaxial compression", Theor. Appl. Fract. Mech., 108, 102610. https://doi.org/10.1016/j.tafmec.2020.102610.
- Huang, Y.H. and Yang, S.Q. (2018), "Mechanical and cracking behavior of granite containing two coplanar flaws under conventional triaxial compression", Int. J. Damage Mech., 28(4), 590-610. https://doi.org/10.1177/1056789518780214.
- Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solid. Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
- Lin, Q. and Cao, P. (2020a), "Mechanical behavior around double circular openings in a jointed rock mass under uniaxial compression", Arch. Civil Mech. Eng., 20(1), 19. https://doi.org/10.1007/s43452-020-00027-z.
- Lin, Q. and Cao, P. (2020b), "Strength and failure characteristics of jointed rock mass with double circular holes under uniaxial compression: Insights from discrete element method modelling", Theor. Appl. Fract. Mech., 109, 102692. https://doi.org/10.1016/j.tafmec.2020.102692.
- Lin, Q. and Cao, P. (2020c), "Fatigue behavior and constitutive model of yellow sandstone containing pre-existing surface crack under uniaxial cyclic loading", Theor. Appl. Fract. Mech., 109, 102776. https://doi.org/10.1016/j.tafmec.2020.102776.
- Ma, J., Wu, S., Zhang, X.P. and Gan, Y. (2020), "Modeling acoustic emission in the Brazilian test using moment tensor inversion", Comput. Geotech., 123, 103567. https://doi.org/10.1016/j.compgeo.2020.103567.
- Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
- Prudencio, M. and Jan, M.V.S. (2007), "Strength and failure modes of rock mass models with non-persistent joints", Int. J. Rock Mech. Min. Sci., 44, 890-902. https://doi.org/10.1016/j.ijrmms.2007.01.005.
- Sarfarazi, V. and Haeri, H. (2016a), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370.
- Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016b), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. http://dx.doi.org/10.12989/acc.2015.3.4.269.
- Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of Echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3.
- Sarfarazi, V., Haeri, H. and Khaloo, A. (2016c), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. http://dx.doi.org/10.12989/cac.2016.17.6.723.
- Sarfarazi, V., Haeri, H., Shemirani, A. and Zhu, Z. (2017), "Shear behavior of non-persistent joint under high normal load", Strength Mater., 49, 320-334. https://doi.org/10.1007/s11223-017-9872-6.
- Tang, C., Lin, P., Wong, R. and Chau, K. (2001), "Analysis of crack coalescence in rock-like materials containing three flawsPart II: Numerical approach", Int. J. Rock Mech. Min. Sci., 38, 925-939. https://doi.org/10.1016/S1365-1609(01)00065-X.
- Tiwari, R. and Rao, K. (2006), "Post failure behavior of a rock mass under the influence of triaxial and true triaxial confinement", Eng. Geol., 84, 112-129. https://doi.org/10.1016/j.enggeo.2006.01.001.
- Vallejo, L.E., Shettima, M. and Alaasmi (2013), "A unconfined compressive strength of brittle material containing multiple cracks", Int. J. Geotech. Eng., 7(3), 318-322. https://doi.org/10.1179/1938636213Z.00000000035.
- Wong, L.N.Y. and Einstein, H.H. (2009a), "Crack coalescence in molded gypsum and Carrara marble: Part 1. Macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511. https://doi.org/10.1007/s00603-008-0002-4.
- Wong, L.N.Y. and Einstein, H.H. (2009b), "Crack coalescence in molded gypsum and Carrara marble: Part 2. Microscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 513-545. https://doi.org/10.1007/s00603-008-0003-3.
- Wong, L.N.Y. and Zhang, X.P. (2014), "Size effects on cracking behavior of flaw-containing specimens under compressive loading", Rock Mech. Rock Eng., 47(5), 1921-1930. https://doi.org/10.1007/s00603-013-0424-5.
- Wu, L., Li, B., Huang, R. and Sun, P. (2017), "Experimental study and modeling of shear rheology in sandstone with non-persistent joints", Eng. Geol., 222, 201-211. https://doi.org/10.1016/j.enggeo.2017.04.003.
- Yang, S. and Jing, H. (2011), "Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression", Int. J. Fract., 168, 227-250. https://doi.org/10.1007/s10704-010-9576-4.
- Yang, S., Huang, Y., Jing, H. and Liu, X. (2014), "Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression", Eng. Geol., 178, 28-48. https://doi.org/10.1016/j.enggeo.2014.06.005.
- Yang, S., Yang, D., Jing, H., Li, Y. and Wang, S. (2012), "An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures", Rock Mech. Rock Eng., 45, 563-582. https://doi.org/10.1007/s00603-011-0206-x.
- Yang, S.Q., Liu, X.R. and Jing, H.W. (2013), "Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression", Int. J. Rock Mech. Min. Sci., 63, 82-92. https://doi.org/10.1016/j.ijrmms.2013.06.008.
- Yang, X., Kulatilake, P., Jing, H. and Yang, S. (2015), "Numerical simulation of a jointed rock block mechanical behavior adjacent to an underground excavation and comparison with physical model test results", Tunn. Undergr. Space Technol., 50, 129-142. https://doi.org/10.1016/j.tust.2015.07.006.
- Zhang, B., Li, S., Zhang, D., Li, M. and Shao, D. (2012), "Uniaxial compression mechanical property test, fracture and damage analysis of similar material of jointed rock mass with filled cracks", Rock Soil Mech., 33, 1647-1652. https://doi.org/10.3969/j.issn.1000-7598.2012.06.008
- Zhang, K., Cao, P., Ma, G., Wang, W., Fan, W. and Li, K. (2016), "Strength, fragmentation and fractal properties of mixed flaws", Acta Geotechnica, 11(4), 901-912. https://doi.org/10.1007/s11440-015-0403-y.
- Zhang, X. and Wong, L. (2012), "Cracking processes in rock-like material containing a single flaw under uniaxial compression: A numerical study based on parallel bonded-particle model approach", Rock Mech. Rock Eng., 45, 711-737. https://doi.org/10.1007/s00603-011-0176-z.
- Zhang, X.P. and Wong, L. (2012), "Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach", Rock Mech. Rock Eng., 45(5), 711-737. https://doi.org/10.1007/s00603-011-0176-z.
- Zhang, X.P., Ji, P.Q., Peng, J., Wu, S.C. and Zhang, Q. (2020), "A grain-based model considering pre-existing cracks for modelling mechanical properties of crystalline rock", Comput. Geotech., 127, 103776. https://doi.org/10.1016/j.compgeo.2020.103776.
- Zhang, X.P., Liu, Q., Wu, S. and Tang, X. (2015), "Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression", Eng. Geol., 199, 74-90. https://doi.org/10.1016/j.enggeo.2015.10.007.
- Zhang, X.P., Liu, Q., Wu, S. and Tang, X. (2017), "Acoustic emission characteristics of the rock-like material containing a single flaw under different compressive loading rates", Comput. Geotech., 83, 83-97. https://doi.org/10.1016/j.enggeo.2015.10.007.
- Zhao, W.S., Chen, W.Z. and Zhao, K. (2018), "Laboratory test on foamed concrete-rock joints in direct shear", Constr. Build. Mater., 173, 69-80. https://doi.org/10.1016/j.conbuildmat.2018.04.006.