DOI QR코드

DOI QR Code

Static analysis of simply supported porous sandwich plates

  • 투고 : 2019.09.13
  • 심사 : 2020.11.27
  • 발행 : 2021.02.25

초록

In this study, it is aimed to analyze the bending of porous sandwich plates using the four-variable shear deformation theory. The core of the sandwich plate is assumed to be functionally graded, and face sheets are assumed to be isotropic. The pore distribution of the sandwich plate is considered even and uneven type of porosity distribution. Displacement fields are defined with four variable shear deformation theory. Equilibrium equations of porous sandwich plates are derived from virtual displacement principle. An analytical solution is obtained by Navier's approach. Results are presented for uniformly and sinusoidally distributed loaded porous sandwich plates. Face sheet -core thickness ratio, porosity distribution, amount of porosity is investigated.

키워드

참고문헌

  1. Akavci, S.S. and Tanrikulu, A.H. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. Part B, 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.
  2. Akbas S.D. (2017), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3, 199-207. https://doi.org/10.22055/jacm.2017.21540.1107.
  3. Carlsson, L.A. and Kardomateas, G.A. (2011), Structural and Failure Mechanics of Sandwich Composites, Springer, New York, USA.
  4. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
  5. Daikh A.A. and Zenkour A.M. (2019), "Effect of porosity on the bending analysis of various functionally graded sandwich plates", Mater. Res. Express, 6(6), 065703. https://doi.org/10.1088/2053-1591/ab0971.
  6. Daouadji, T.H., Adim, B. and Benferhat, R. (2016), "Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation", Adv. Mater. Res., 5(1), 35-53. https://doi.org/10.12989/amr.2016.5.1.035.
  7. Demirhan, P.A. and Taskin, V. (2017), "Levy solution for bending analysis of functionally graded sandwich plates based on four variable plate theory", Compos. Struct., 177, 80-95. https://doi.org/10.1016/j.compstruct.2017.06.048.
  8. Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. B Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.
  9. Demirhan, P.A. and Taskin, V. (2019), "Static analysis of simply supported functionally graded sandwich plates by using four variable plate theory", Teknik Dergi., 30(2), 8987-9007. https://doi.org/10.18400/tekderg.396672.
  10. Ghumare, S.M. and Sayyad, A.S. (2019) "A new Quasi-3D model for functionally graded plates", J. Appl. Comput. Mech., 5(2) 367-380. https://doi.org/10.22055/JACM.2018.26739.1353.
  11. Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Bedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four-variable refined plate theory", Appl. Math. Mech., 32(7), 925-942. https://doi.org/10.1007/s10483-011-1470-9.
  12. Houari, M.S.A., Benyoucef, S., Mechab, I., Tounsi, A. and Bedia, E.A.A. (2011), "Two variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates", J. Therm. Stress., 34(4), 315-34. https://doi.org/10.1080/01495739.2010.550806.
  13. Kim, S.E., Thai, H.T. and Lee, J. (2009), "A two variable refined plate theory for laminated composite plates", Compos. Struct., 89, 97-205. https://doi.org/10.1016/j.compstruct.2008.07.017.
  14. Li, D., Deng, Z. and Xiao, H. (2016), "Thermomechanical bending analysis of functionally graded sandwich plates using four-variable refined plate theory", Compos. Part B, 106, 107-119. https://doi.org/10.1016/j.compositesb.2016.08.041.
  15. Mechab, I., Atmane, H.A., Tounsi, A., Belhadj, H.A. and Bedia, E.A.A. (2010), "A two variable refined plate theory for the bending analysis of functionally graded plates", Acta Mechanica Sinica, 26, 941-949. https://doi.org/10.1007/s10409-010-0372-1.
  16. Merdaci, S. and Belghoul, H. (2019), "High-order shear theory for static analysis of functionally graded plates with porosities", C. R. Mecanique, 347, 207-217. https://doi.org/10.1016/j.crme.2019.01.001.
  17. Nguyen, V.H., Nguyen, T.K., Thai, H.T. and Vo, T.P. (2014), "A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates", Compos. B, 66, 233-346. https://doi.org/10.1016/j.compositesb.2014.05.012.
  18. Rezaei, A.S., Saidi, A.R., Abrishamdari, M. and Pour Mohammadi, M.H. (2017), "Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: An analytical approach", Thin Wall. Struct., 120, 366-377. https://doi.org/10.1016/j.tws.2017.08.003.
  19. Sayyad, A.S. and Avhad, P.V. (2019) "On static bending, elastic buckling and free vibration analysis of symmetric functionally graded sandwich beams", J. Solid. Mech., 11(1), 166-180. https://doi.org/10.22034/JSM.2019.664227.
  20. Sayyad, A.S. and Ghugal, Y.M. (2017), "On the free vibration of angle-ply laminated composite and soft core sandwich plates", J. Sandw. Struct. Mater., 19(6), 679-711. https://doi.org/10.1177/1099636216639000.
  21. Sayyad, A.S. and Ghugal, Y.M. (2018) "Analytical solutions for bending, buckling, and vibration analyses of exponential functionally graded higher order beams", Asian J. Civil Eng., 19, 607-623. https://doi.org/10.1007/s42107-018-0046-z.
  22. Sayyad, A.S. and Ghugal, Y.M. (2019a), "A sinusoidal beam theory for functionally graded sandwich curved beams", Compos. Struct., 226, 111246. https://doi.org/10.1016/j.compstruct.2019.111246.
  23. Sayyad, A.S. and Ghugal, Y.M. (2019b) "A unified five-degree-of freedom theory for the bending analysis of softcore and hardcore functionally graded sandwich beams and plates", J. Sandw. Struct. Mater., 1-34. https://doi.org/10.1177/1099636219840980.
  24. Sayyad, A.S. and Ghugal, Y.M. (2019c) "Modeling and analysis of functionally graded sandwich beams: a review", Mech. Adv. Mater. Struct., 26(21), 1776-1795. https://doi.org/10.1080/15376494.2018.1447178.
  25. Sayyad, A.S., Shinde, B.M. and Ghugal, Y.M. (2017), "Bending, vibration and buckling of laminated composite plates using a simple four variable plate theory", Lat. Am. J. Solid. Struct., 13, 516-535 https://dx.doi.org/10.1590/1679-78252241.
  26. Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J, 40, 137-146. https://doi.org/10.2514/2.1622.
  27. Shimpi, R.P. and Patel, H.G. (2006), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solid. Struct., 43, 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007.
  28. Thai, H.T. and Kim, S.E. (2011), "Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates", Int. J. Mech. Sci., 54, 269-276. https://doi.org/10.1016/j.ijmecsci.2011.11.007.
  29. Thai, H.T. and Kim, S.E. (2012), "Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates", Int. J. Mech. Sci., 54, 269-276. https://doi.org/10.1016/j.ijmecsci.2011.11.007.
  30. Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2013), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech. A-Solid., 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.
  31. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29, 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  32. Vinson, J.R. (1999), The Behavior of Sandwich Structures of Isotropic and Composite Materials, Taylor & Francis Routledge, Lancastar, USA.
  33. Zenkour A.M. (2018), "A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities", Compos. Struct., 201, 38-48. https://doi.org/10.1016/j.compstruct.2018.05.147.
  34. Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses", Int. J. Solid. Struct., 42, 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015.
  35. Zenkour, A.M. and Alghamdi, N.A. (2010), "Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads", Mech. Adv. Mater. Struct., 17, 419-432. https://doi.org/10.1080/15376494.2010.483323.
  36. Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68, 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2.

피인용 문헌

  1. A n-order refined theory for free vibration of sandwich beams with functionally graded porous layers vol.79, pp.3, 2021, https://doi.org/10.12989/sem.2021.79.3.279