DOI QR코드

DOI QR Code

Large amplitude free torsional vibration analysis of size-dependent circular nanobars using elliptic functions

  • Received : 2020.01.11
  • Accepted : 2020.11.25
  • Published : 2021.02.25

Abstract

This paper concerns with free torsional vibration analysis of size dependent circular nanobars with von kármán type nonlinearity. Although review of the literature suggests several studies employing nonlocal elasticity theory to investigate linear torsional behavior, linear/nonlinear transverse vibration and buckling of the nanoscale structures, so far, no study on the nonlinear torsional behavior of the nanobars, considering the size effect, has been reported. This study employs nonlocal elasticity theory along with a variational approach to derive nonlinear equation of motion of the nanobar. Then, the nonlinear equation is solved using the elliptic functions to extract the natural frequencies of the structure under fixed-fixed and fixed-free end conditions. Finally, the natural frequencies of the nanobar under different nanobar lengths, diameters, nonlocal parameters, and amplitudes of vibration are reported to illustrate the effect of these parameters on the vibration characteristics of the nanobars. In addition, the phase plane diagrams of the nanobar for various cases are reported.

Keywords

References

  1. Apuzzo, A., Barretta, R., Canadija, M., Feo, L., Luciano, R. and de Sciarra, F.M. (2017), "A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation", Compos. Part B-Eng., 108, 315-324. https://doi.org/10.1016/j.compositesb.2016.09.012.
  2. Arda, M. and Aydogdu, M. (2016), "Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity", Appl. Phys. A-Mater., 122(3), 219. https://doi.org/10.1007/s00339-016-9751-1.
  3. Arda, M. and Aydogdu, M. (2017), "Nonlocal gradient approach on torsional vibration of CNTs", Noise Theory Pract., 3(3), 9.
  4. Aydogdu, M. and Arda, M. (2016), "Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity", Int. J. Mech. Mater. Des., 12(1), 71-84. https://doi.org/10.1007/s10999-014-9292-8.
  5. Azrar, L., Benamar, R. and White, R. (1999), "Semi-analytical approach to the non-linear dynamic response problem of S-S and C-C beams at large vibration amplitudes part I: general theory and application to the single mode approach to free and forced vibration analysis", J. Sound Vib., 224(2), 183-207. https://doi.org/10.1006/jsvi.1998.1893.
  6. Azrar, L., Benamar, R. and White, R. (2002), "A semi-analytical approach to the non-linear dynamic response problem of beams at large vibration amplitudes, Part II: Multimode approach to the steady state forced periodic response", J. Sound Vib., 255(1), 1-41. https://doi.org/10.1006/jsvi.2000.3595.
  7. Bagdatli, S.M. (2015), "Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory", Struct. Eng. Mech., 55(2), 281-298. http://dx.doi.org/10.12989/sem.2015.55.2.281.
  8. Berrabah, H., Tounsi, A., Semmah, A. and Adda Bedia, E. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. http://dx.doi.org/10.12989/sem.2013.48.3.351.
  9. Dong, L., Nelson, B.J., Fukuda, T., Arai, F. and Nakajima, M. (2005), "Towards linear nano servomotors with integrated position sensing", Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005.
  10. El-Borgi, S., Rajendran, P., Friswell, M., Trabelssi, M. and Reddy, J. (2018), "Torsional vibration of size-dependent viscoelastic rods using nonlocal strain and velocity gradient theory", Compos. Struct., 186, 274-292. https://doi.org/10.1016/j.compstruct.2017.12.002.
  11. Fennimore, A., Yuzvinsky, T., Han, W.Q., Fuhrer, M., Cumings, J. and Zettl, A. (2003), "Rotational actuators based on carbon nanotubes", Nature, 424(6947), 408. https://doi.org/10.1038/nature01823.
  12. Gheshlaghi, B. and Hasheminejad, S.M. (2010), "Size dependent torsional vibration of nanotubes", Physica E, 43(1), 45-48. https://doi.org/10.1016/j.physe.2010.06.015.
  13. Gheshlaghi, B. and Hasheminejad, S.M. (2011), "Surface effects on nonlinear free vibration of nanobeams", Compos. Part B-Eng., 42(4), 934-937. https://doi.org/10.1016/j.compositesb.2010.12.026.
  14. Han, T., Li, J., Zhao, N. and He, C. (2020), "Fabrication of graphene nanoplates modified with nickel nanoparticles for reinforcing copper matrix composites", Acta Metallurgica Sinica (English Letters), 33, 643-648. https://doi.org/10.1007/s40195-020-00999-0
  15. Hosseini-Hashemi, S., Nazemnezhad, R. and Rokni, H. (2015), "Nonlocal nonlinear free vibration of nanobeams with surface effects", Eur. J. Mech. A-Solid, 52, 44-53. https://doi.org/10.1016/j.euromechsol.2014.12.012.
  16. Islam, Z., Jia, P. and Lim, C. (2014), "Torsional wave propagation and vibration of circular nanostructures based on nonlocal elasticity theory", Int. J. Appl. Mech., 6(2), 1450011. https://doi.org/10.1142/S1758825114500112.
  17. Kahrobaiyan, M., Tajalli, S., Movahhedy, M., Akbari, J. and Ahmadian, M. (2011), "Torsion of strain gradient bars", Int. J. Eng. Sci., 49(9), 856-866. https://doi.org/10.1016/j.ijengsci.2011.04.008.
  18. Karlicic, D., Cajic, M., Murmu, T. and Adhikari, S. (2015), "Nonlocal longitudinal vibration of viscoelastic coupled doublenanorod systems", Eur. J. Mech. A-Solid, 49, 183-196. https://doi.org/10.1016/j.euromechsol.2014.07.005.
  19. Lim, C., Islam, M. and Zhang, G. (2015), "A nonlocal finite element method for torsional statics and dynamics of circular nanostructures", Int. J. Eng. Sci., 94, 232-243. https://doi.org/10.1016/j.ijmecsci.2015.03.002.
  20. Lim, C.W., Li, C. and Yu, J. (2012), "Free torsional vibration of nanotubes based on nonlocal stress theory", J. Sound Vib., 331(12), 2798-2808. https://doi.org/10.1016/j.jsv.2012.01.016.
  21. Loya, J., Aranda-Ruiz, J. and Fernandez-Saez, J. (2014), "Torsion of cracked nanorods using a nonlocal elasticity model", J. Phys. D Appl. Phys., 47(11), 115304. https://doi.org/10.1088/0022-3727/47/11/115304.
  22. Meyer, J.C., Paillet, M. and Roth, S. (2005), "Single-molecule torsional pendulum", Sci., 309(5740), 1539-1541. https://doi.org/10.1126/science.1115067.
  23. Murmu, T., Adhikari, S. and Wang, C. (2011), "Torsional vibration of carbon nanotube-buckyball systems based on nonlocal elasticity theory", Physica E, 43(6), 1276-1280. https://doi.org/10.1016/j.physe.2011.02.017.
  24. Narendar, S. (2011), "Nonlocal torsional vibration of nanorods", J. NanoSci. NanoEng. App., 1(2).
  25. Narendar, S., Ravinder, S. and Gopalakrishnan, S. (2012), "Strain gradient torsional vibration analysis of micro/nano rods", Int. J. Nano Dim., 3(1), 1-17. https://doi.org/10.7508/IJND.2012.01.001.
  26. Nazemnezhad, R. and Fahimi, P. (2017), "Free torsional vibration of cracked nanobeams incorporating surface energy effects", Appl. Math. Mech.-Engl., 38(2), 217-230. https://doi.org/10.1007/s10483-017-2167-9.
  27. Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006.
  28. Nazemnezhad, R. and Kamali, K. (2018), "Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory", Steel. Compos. Struct., 28(6), 749-758. https://doi.org/10.12989/scs.2018.28.6.749.
  29. Nguyen, H.X., Nguyen, T.N., Abdel-Wahab, M., Bordas, S.P.A., Nguye-Xuan, H. and Vo, T.P. (2017), "A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory", Comput. Meth. Appl. M., 313, 904-940. http://dx.doi.org/10.1016/j.cma.2016.10.002.
  30. Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., 54(6), 1061-1073. http://dx.doi.org/10.12989/sem.2015.54.6.1061.
  31. Pradhan, S. and Sarkar, A. (2009), "Analyses of tapered FGM beams with nonlocal theory", Struct. Eng. Mech., 32(6), 811-833. http://dx.doi.org/10.12989/sem.2009.32.6.811.
  32. Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019), "Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis", Compos. Part B-Eng., 164, 215-225. http://dx.doi.org/10.1016/j.compositesb.2018.11.036.
  33. Qiao, C., Zhou, Y., Cai, X., Yu, W., Du, B., Wang, H., . . . Jia, Y. (2016), "Molecular dynamics simulation studies on the plastic behaviors of an iron nanowire under torsion", RSC Adv., 6(34), 28792-28800. http://dx.doi.org/10.1039/C6RA06125G.
  34. Rahmani, O., Hosseini, S., Noroozi Moghaddam, M. and Fakhari Golpayegani, I. (2015), "Torsional vibration of cracked nanobeam based on nonlocal stress theory with various boundary conditions: an analytical study", Int. J. Appl. Mech., 7(3), 1550036. https://doi.org/10.1142/S1758825115500362.
  35. Setoodeh, A., Rezaei, M. and Shahri, M.Z. (2016), "Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory", Appl. Math. Mech.-Engl., 37(6), 725-740. https://doi.org/10.1007/s10483-016-2085-6.
  36. Thanh, C.L., Ferreira, A.J.M. and Abdel Wahab, M. (2019a), "A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis", Thin Wall. Struct., 145, 106427. http://dx.doi.org/10.1016/j.tws.2019.106427.
  37. Thanh, C.L., Tran, L.V., Bui, T.Q., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019b), "Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates", Compos. Struct., 221, 110838. http://dx.doi.org/10.1016/j.compstruct.2019.04.010.
  38. Thanh, C.L., Tran, L.V., Vu-Huu, T., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019c), "Size-dependent nonlinear analysis and damping responses of FG-CNTRC micro-plates", Comput. Meth. Appl. M, 353, 253-276. http://dx.doi.org/10.1016/j.cma.2019.05.002.
  39. Thanh, C.L., Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Abdel-Wahab, M. (2018), "Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory", Compos. Struct., 184, 633-649. http://dx.doi.org/10.1016/j.compstruct.2017.10.025.
  40. Williams, P., Papadakis, S., Patel, A., Falvo, M., Washburn, S. and Superfine, R. (2002), "Torsional response and stiffening of individual multiwalled carbon nanotubes", Phys. Rev. Lett., 89(25), 255502. https://doi.org/10.1103/PhysRevLett.89.255502.
  41. Xu, B.X., Zhang, Y., Zhu, H.S., Shen, D.Z. and Wu, J.L. (2005), "Fabrication and mechanism of α-FeSi2 nanobars on (001) silicon wafer", Mater. Lett., 59(7), 833-837. http://dx.doi.org/10.1016/j.matlet.2004.10.060.
  42. Yayli, M.O . (2018a), "Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory", Micro Nano Lett., 13(5), 595-599. http://dx.doi.org/10.1049/mnl.2017.0751.
  43. Yayli, M.O . (2018b), "Torsional vibrations of restrained nanotubes using modified couple stress theory", Microsyst. Technol., 24, 3425-3435. https://doi.org/10.1007/s00542-018-3735-3.