References
- Apuzzo, A., Barretta, R., Canadija, M., Feo, L., Luciano, R. and de Sciarra, F.M. (2017), "A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation", Compos. Part B-Eng., 108, 315-324. https://doi.org/10.1016/j.compositesb.2016.09.012.
- Arda, M. and Aydogdu, M. (2016), "Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity", Appl. Phys. A-Mater., 122(3), 219. https://doi.org/10.1007/s00339-016-9751-1.
- Arda, M. and Aydogdu, M. (2017), "Nonlocal gradient approach on torsional vibration of CNTs", Noise Theory Pract., 3(3), 9.
- Aydogdu, M. and Arda, M. (2016), "Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity", Int. J. Mech. Mater. Des., 12(1), 71-84. https://doi.org/10.1007/s10999-014-9292-8.
- Azrar, L., Benamar, R. and White, R. (1999), "Semi-analytical approach to the non-linear dynamic response problem of S-S and C-C beams at large vibration amplitudes part I: general theory and application to the single mode approach to free and forced vibration analysis", J. Sound Vib., 224(2), 183-207. https://doi.org/10.1006/jsvi.1998.1893.
- Azrar, L., Benamar, R. and White, R. (2002), "A semi-analytical approach to the non-linear dynamic response problem of beams at large vibration amplitudes, Part II: Multimode approach to the steady state forced periodic response", J. Sound Vib., 255(1), 1-41. https://doi.org/10.1006/jsvi.2000.3595.
- Bagdatli, S.M. (2015), "Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory", Struct. Eng. Mech., 55(2), 281-298. http://dx.doi.org/10.12989/sem.2015.55.2.281.
- Berrabah, H., Tounsi, A., Semmah, A. and Adda Bedia, E. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. http://dx.doi.org/10.12989/sem.2013.48.3.351.
- Dong, L., Nelson, B.J., Fukuda, T., Arai, F. and Nakajima, M. (2005), "Towards linear nano servomotors with integrated position sensing", Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005.
- El-Borgi, S., Rajendran, P., Friswell, M., Trabelssi, M. and Reddy, J. (2018), "Torsional vibration of size-dependent viscoelastic rods using nonlocal strain and velocity gradient theory", Compos. Struct., 186, 274-292. https://doi.org/10.1016/j.compstruct.2017.12.002.
- Fennimore, A., Yuzvinsky, T., Han, W.Q., Fuhrer, M., Cumings, J. and Zettl, A. (2003), "Rotational actuators based on carbon nanotubes", Nature, 424(6947), 408. https://doi.org/10.1038/nature01823.
- Gheshlaghi, B. and Hasheminejad, S.M. (2010), "Size dependent torsional vibration of nanotubes", Physica E, 43(1), 45-48. https://doi.org/10.1016/j.physe.2010.06.015.
- Gheshlaghi, B. and Hasheminejad, S.M. (2011), "Surface effects on nonlinear free vibration of nanobeams", Compos. Part B-Eng., 42(4), 934-937. https://doi.org/10.1016/j.compositesb.2010.12.026.
- Han, T., Li, J., Zhao, N. and He, C. (2020), "Fabrication of graphene nanoplates modified with nickel nanoparticles for reinforcing copper matrix composites", Acta Metallurgica Sinica (English Letters), 33, 643-648. https://doi.org/10.1007/s40195-020-00999-0
- Hosseini-Hashemi, S., Nazemnezhad, R. and Rokni, H. (2015), "Nonlocal nonlinear free vibration of nanobeams with surface effects", Eur. J. Mech. A-Solid, 52, 44-53. https://doi.org/10.1016/j.euromechsol.2014.12.012.
- Islam, Z., Jia, P. and Lim, C. (2014), "Torsional wave propagation and vibration of circular nanostructures based on nonlocal elasticity theory", Int. J. Appl. Mech., 6(2), 1450011. https://doi.org/10.1142/S1758825114500112.
- Kahrobaiyan, M., Tajalli, S., Movahhedy, M., Akbari, J. and Ahmadian, M. (2011), "Torsion of strain gradient bars", Int. J. Eng. Sci., 49(9), 856-866. https://doi.org/10.1016/j.ijengsci.2011.04.008.
- Karlicic, D., Cajic, M., Murmu, T. and Adhikari, S. (2015), "Nonlocal longitudinal vibration of viscoelastic coupled doublenanorod systems", Eur. J. Mech. A-Solid, 49, 183-196. https://doi.org/10.1016/j.euromechsol.2014.07.005.
- Lim, C., Islam, M. and Zhang, G. (2015), "A nonlocal finite element method for torsional statics and dynamics of circular nanostructures", Int. J. Eng. Sci., 94, 232-243. https://doi.org/10.1016/j.ijmecsci.2015.03.002.
- Lim, C.W., Li, C. and Yu, J. (2012), "Free torsional vibration of nanotubes based on nonlocal stress theory", J. Sound Vib., 331(12), 2798-2808. https://doi.org/10.1016/j.jsv.2012.01.016.
- Loya, J., Aranda-Ruiz, J. and Fernandez-Saez, J. (2014), "Torsion of cracked nanorods using a nonlocal elasticity model", J. Phys. D Appl. Phys., 47(11), 115304. https://doi.org/10.1088/0022-3727/47/11/115304.
- Meyer, J.C., Paillet, M. and Roth, S. (2005), "Single-molecule torsional pendulum", Sci., 309(5740), 1539-1541. https://doi.org/10.1126/science.1115067.
- Murmu, T., Adhikari, S. and Wang, C. (2011), "Torsional vibration of carbon nanotube-buckyball systems based on nonlocal elasticity theory", Physica E, 43(6), 1276-1280. https://doi.org/10.1016/j.physe.2011.02.017.
- Narendar, S. (2011), "Nonlocal torsional vibration of nanorods", J. NanoSci. NanoEng. App., 1(2).
- Narendar, S., Ravinder, S. and Gopalakrishnan, S. (2012), "Strain gradient torsional vibration analysis of micro/nano rods", Int. J. Nano Dim., 3(1), 1-17. https://doi.org/10.7508/IJND.2012.01.001.
- Nazemnezhad, R. and Fahimi, P. (2017), "Free torsional vibration of cracked nanobeams incorporating surface energy effects", Appl. Math. Mech.-Engl., 38(2), 217-230. https://doi.org/10.1007/s10483-017-2167-9.
- Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006.
- Nazemnezhad, R. and Kamali, K. (2018), "Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory", Steel. Compos. Struct., 28(6), 749-758. https://doi.org/10.12989/scs.2018.28.6.749.
- Nguyen, H.X., Nguyen, T.N., Abdel-Wahab, M., Bordas, S.P.A., Nguye-Xuan, H. and Vo, T.P. (2017), "A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory", Comput. Meth. Appl. M., 313, 904-940. http://dx.doi.org/10.1016/j.cma.2016.10.002.
- Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., 54(6), 1061-1073. http://dx.doi.org/10.12989/sem.2015.54.6.1061.
- Pradhan, S. and Sarkar, A. (2009), "Analyses of tapered FGM beams with nonlocal theory", Struct. Eng. Mech., 32(6), 811-833. http://dx.doi.org/10.12989/sem.2009.32.6.811.
- Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019), "Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis", Compos. Part B-Eng., 164, 215-225. http://dx.doi.org/10.1016/j.compositesb.2018.11.036.
- Qiao, C., Zhou, Y., Cai, X., Yu, W., Du, B., Wang, H., . . . Jia, Y. (2016), "Molecular dynamics simulation studies on the plastic behaviors of an iron nanowire under torsion", RSC Adv., 6(34), 28792-28800. http://dx.doi.org/10.1039/C6RA06125G.
- Rahmani, O., Hosseini, S., Noroozi Moghaddam, M. and Fakhari Golpayegani, I. (2015), "Torsional vibration of cracked nanobeam based on nonlocal stress theory with various boundary conditions: an analytical study", Int. J. Appl. Mech., 7(3), 1550036. https://doi.org/10.1142/S1758825115500362.
- Setoodeh, A., Rezaei, M. and Shahri, M.Z. (2016), "Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory", Appl. Math. Mech.-Engl., 37(6), 725-740. https://doi.org/10.1007/s10483-016-2085-6.
- Thanh, C.L., Ferreira, A.J.M. and Abdel Wahab, M. (2019a), "A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis", Thin Wall. Struct., 145, 106427. http://dx.doi.org/10.1016/j.tws.2019.106427.
- Thanh, C.L., Tran, L.V., Bui, T.Q., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019b), "Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates", Compos. Struct., 221, 110838. http://dx.doi.org/10.1016/j.compstruct.2019.04.010.
- Thanh, C.L., Tran, L.V., Vu-Huu, T., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019c), "Size-dependent nonlinear analysis and damping responses of FG-CNTRC micro-plates", Comput. Meth. Appl. M, 353, 253-276. http://dx.doi.org/10.1016/j.cma.2019.05.002.
- Thanh, C.L., Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Abdel-Wahab, M. (2018), "Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory", Compos. Struct., 184, 633-649. http://dx.doi.org/10.1016/j.compstruct.2017.10.025.
- Williams, P., Papadakis, S., Patel, A., Falvo, M., Washburn, S. and Superfine, R. (2002), "Torsional response and stiffening of individual multiwalled carbon nanotubes", Phys. Rev. Lett., 89(25), 255502. https://doi.org/10.1103/PhysRevLett.89.255502.
- Xu, B.X., Zhang, Y., Zhu, H.S., Shen, D.Z. and Wu, J.L. (2005), "Fabrication and mechanism of α-FeSi2 nanobars on (001) silicon wafer", Mater. Lett., 59(7), 833-837. http://dx.doi.org/10.1016/j.matlet.2004.10.060.
- Yayli, M.O . (2018a), "Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory", Micro Nano Lett., 13(5), 595-599. http://dx.doi.org/10.1049/mnl.2017.0751.
- Yayli, M.O . (2018b), "Torsional vibrations of restrained nanotubes using modified couple stress theory", Microsyst. Technol., 24, 3425-3435. https://doi.org/10.1007/s00542-018-3735-3.