References
- Adcock C, Eling M, and Loperfido N (2015). Skewed distributions in finance and actuarial science: a review, The European Journal of Finance, 21, 1253-1281. https://doi.org/10.1080/1351847X.2012.720269
- Ahmad Z, Hamedani GG, and Butt NS (2019a). Recent developments in distribution theory: a brief survey and some new generalized classes of distributions, Pakistan Journal of Statistics and Operation Research, 15, 87-110.
- Ahmad Z, Ilyas M, and Hamedani GG (2019b). The extended alpha power transformed family of distributions: properties and applications, Journal of Data Science, 17, 726-741.
- Artzner P (1999). Application of coherent risk measures to capital requirements in insurance, North American Actuarial Journal, 3, 11-25. https://doi.org/10.1080/10920277.1999.10595795
- Bagnato L and Punzo A (2013). Finite mixtures of unimodal beta and gamma densities and the k-bumps algorithm, Computational Statistics, 28, 1571-1597. https://doi.org/10.1007/s00180-012-0367-4
- Bakar SA, Hamzah NA, Maghsoudi M, and Nadarajah S (2015). Modeling loss data using composite models, Insurance: Mathematics and Economics, 61, 146-154. https://doi.org/10.1016/j.insmatheco.2014.08.008
- Bernardi M, Maruotti A, and Petrella L (2012). Skew mixture models for loss distributions: a Bayesian approach, Insurance: Mathematics and Economics, 51, 617-623. https://doi.org/10.1016/j.insmatheco.2012.08.002
- Bhati D and Ravi S (2018). On generalized log-Moyal distribution: A new heavy tailed size distribution, Insurance: Mathematics and Economics, 79, 247-259. https://doi.org/10.1016/j.insmatheco.2018.02.002
- Cooray K and Ananda MM (2005). Modeling actuarial data with a composite lognormal-Pareto model, Scandinavian Actuarial Journal, 2005, 321-334. https://doi.org/10.1080/03461230510009763
- Eling M (2012). Fitting insurance claims to skewed distributions: Are the skew-normal and skewstudent good models?, Insurance: Mathematics and Economics, 51, 239-248. https://doi.org/10.1016/j.insmatheco.2012.04.001
- Garcia VJ, Gomez-Deniz E, and Vazquez-Polo FJ (2014). On modelling insurance data by using a generalized lognormal distribution, Revista de Metodos Cuantitativos para la Economia y la Empresa, 18, 146-162.
- Glanzel W (1987). A characterization theorem based on truncated moments and its application to some distribution families. In Mathematical Statistics and Probability Theory (pp. 75-84), Springer, Dordrecht.
- Glanzel W (1990). Some consequences of a characterization theorem based on truncated moments, Statistics, 21, 613-618. https://doi.org/10.1080/02331889008802273
- Ibragimov R and Prokhorov A (2017). Heavy tails and copulas: topics in dependence modelling in economics and finance.
- Kazemi R and Noorizadeh M (2015). A comparison between skew-logistic and skew-normal distributions, MATEMATIKA: Malaysian Journal of Industrial and Applied Mathematics, 31, 15-24.
- Klugman SA, Panjer HH, and Willmot GE (2012). Loss Models: From Data to Decisions (4th ed), John Wiley and Sons, Hoboken, NJ.
- Landsman Z, Makov U, and Shushi T (2016). Tail conditional moments for elliptical and log-elliptical distributions, Insurance: Mathematics and Economics, 71, 179-188. https://doi.org/10.1016/j.insmatheco.2016.09.001
- Lane MN (2000). Pricing risk transfer transactions 1, ASTIN Bulletin: The Journal of the IAA, 30, 259-293. https://doi.org/10.2143/AST.30.2.504635
- Mahdavi A and Kundu D (2017). A new method for generating distributions with an application to exponential distribution, Communications in Statistics-Theory and Methods, 46, 6543-6557. https://doi.org/10.1080/03610926.2015.1130839
- Punzo A, Bagnato L, and Maruotti A (2018). Compound unimodal distributions for insurance losses, Insurance: Mathematics and Economics, 81, 95-107. https://doi.org/10.1016/j.insmatheco.2017.10.007
- Reynkens T, Verbelen R, Beirlant J, and Antonio K (2017). Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions, Insurance: Mathematics and Economics, 77, 65-77. https://doi.org/10.1016/j.insmatheco.2017.08.005