참고문헌
- Arietta, S. M., Efros, A. A., Ramamoorthi, R., & Agrawala, M. (2014). City forensics: Using visual elements to predict non-visual city attributes. IEEE transactions on visualization and computer graphics, 20(12), 2624-2633. https://doi.org/10.1109/TVCG.2014.2346446
- Bachner, J. (2013). Predictive policing: preventing crime with data and analytic. Washington DC, IBM Center for the Business of Government, 26.
- Bang, S.H., & Cho, H.B. (2016). Learning Method for Realtime Crime Prediction Model Utilizing CCTV. Journal of the Korea Society of Computer and Information, 21(5), 91-98. https://doi.org/10.9708/jksci.2016.21.5.091
- Bekkar, M., Djemaa, H. K., & Alitouche, T. A. (2013). Evaluation measures for models assessment over imbalanced data sets. J Inf Eng Appl, 3(10).
- Bernasco, W. (2008). Them Again? European Journal of Criminology, 5(4), 411-431. https://doi.org/10.1177/1477370808095124
- Brantingham, P. L., & Brantingham, P. J. (1993). Environment, routine and situation: Toward a pattern theory of crime. Advances in criminological theory, 5(2), 259-294.
- Chawla, N. V. (2009). In Data mining and knowledge discovery handbook: Data mining for imbalanced datasets: An overview. Manhattan, Springer, 855.
- Cohen, L. E., & Felson, M. (1979). Social change and crime rate trends: A routine activity approach. American sociological review, 588-608.
- Groff, E. R., Weisburd, D., & Yang, S.M. (2010). Is it Important to Examine Crime Trends at a Local "Micro" Level?: A Longitudinal Analysis of Street to Street Variability in Crime Trajectories. Journal of Quantitative Criminology, 26(1), 7-32. https://doi.org/10.1007/s10940-009-9081-y
- Johnson, S. D., Bernasco, W., Bowers, K. J., Elffers, H., Ratcliffe, J., Rengert, G., & Townsley, M. (2007). Space?Time Patterns of Risk: A Cross National Assessment of Residential Burglary Victimization. Journal of Quantitative Criminology, 23(3), 201-219. https://doi.org/10.1007/s10940-007-9025-3
- Kang, S.H., Yang, J.k., Han, B., & Lee, D.H. (2017). Development of Crime Prediction Model : A Case Study in Anyang City. Journal of the Korean Operations Research and Management Science Society, 42(4), 135-146. https://doi.org/10.7737/JKORMS.2017.42.4.135
- Kim, D., Kou, H., & Kim, H.J. (2018). Analysis of an SVM with Resampling Techniques for Anomaly Detection in a DSMS Environment. KIISE Transactions on Computing Practices, 24(9), 442-455. https://doi.org/10.5626/ktcp.2018.24.9.442
- Kim, H. J., & Lee, S. W. (2011). Determinants of 5 Major Crimes in Seoul Metropolitan Area: Application of Mixed GWR Model. Seoul Studies, 12(4), 137155.
- Kim, M., & Lee, J. (2015). A Data Transformation Method for Visualizing the Statistical Information based on the Grid. Journal of Korea Spatial Information Society, 23(5), 31-40. https://doi.org/10.12672/ksis.2015.23.5.031
- Lin, Y. L., Yen, M. F., & Yu, L. C. (2018). Grid-based crime prediction using geographical features. ISPRS International Journal of Geo-Information, 7(8), 298. https://doi.org/10.3390/ijgi7080298
- Luque, A., Carrasco, A., Martin, A., & de las Heras, A. (2019). The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, 91, 216-231. https://doi.org/10.1016/j.patcog.2019.02.023
- Mani, I., & Zhang, I. (2003). kNN approach to unbalanced data distributions: a case study involving information extraction. Paper presented at the Proceedings of workshop on learning from imbalanced datasets.
- Park, J.M., Chung, Y.S., & Park, k.R. (2015). A study to Predictive modeling of crime using Web traffic information. Journal of the Korea Society of Computer and Information, 20(1), 93-101. https://doi.org/10.9708/jksci.2015.20.1.093
- Park, J., Chae, M., & Jung, S. (2016). Classification Model of Types of Crime based on RandomForest Algorithms and Monitoring Interface Design Factors for Realtime Crime Prediction. KIISE Transactions on Computing Practices, 22(9), 455-460. https://doi.org/10.5626/KTCP.2016.22.9.455
- Roh, S. (2015). Testing the Predictability of Crime Forecasting Models Using SpatioTemporal Analysis and Risk Terrain Modeling. KOREAN CRIMINOLOGICAL REVIEW, 26(3), 239-266.
- Porzi, L., Rota Bulo, S., Lepri, B., & Ricci, E. (2015, October). Predicting and understanding urban perception with convolutional neural networks. In Proceedings of the 23rd ACM international conference on Multimedia, 139-148.
- Santos, M. S., Soares, J. P., Abreu, P. H., Araujo, H., & Santos, J. (2018). Cross-validation for imbalanced datasets: Avoiding overoptimistic and overfitting approaches [research frontier]. ieee ComputatioNal iNtelligeNCe magaziNe, 13(4), 59-76. https://doi.org/10.1109/mci.2018.2866730
- Sherman, L. W., Gartin, P. R., & Buerger, M. E. (1989). Hotspots of predatory crime: Routine activities and the criminology of place. Criminology, 27(1), 27-56. https://doi.org/10.1111/j.1745-9125.1989.tb00862.x
- Wolfgang, M. E., Figlio, R. M., & Sellin, T. (1987). Delinquency in a birth cohort. Chicago, University of Chicago Press, 89.
- Yu, C. H., Ward, M. W., Morabito, M., & Ding, W. (2011). Crime forecasting using data mining techniques. In 2011 IEEE 11th international conference on data mining workshops, 779-786
- Zhang, Y., & Yang, Y. (2015). Cross-validation for selecting a model selection procedure. Journal of Econometrics, 187(1), 95-112. https://doi.org/10.1016/j.jeconom.2015.02.006