DOI QR코드

DOI QR Code

Effects of Arbuscular Mycorrhizal Fungal Inoculation on the Growth of Red Pepper and Soil Glomalin Content

  • Lee, Ji-Eun (Department of Biology Education, Korea National University of Education) ;
  • Lee, Eun-Hwa (Department of Biology Education, Korea National University of Education) ;
  • Eom, Ahn-Heum (Department of Biology Education, Korea National University of Education)
  • Received : 2021.11.23
  • Accepted : 2021.12.13
  • Published : 2021.12.31

Abstract

Red pepper seedlings were inoculated either alone or with a mixture of all five species of arbuscular mycorrhizal fungi (AMF). After 10 weeks of growth in the greenhouse, the seedlings were transplanted into fields and cultivated without chemical fertilizers and pesticides for 10 weeks. The results showed that plant growth was significantly increased under both greenhouse and field conditions, suggesting that AMF inoculation has a positive effect on the growth of Capsicum annuum and improves the physical properties of the soil by increasing the concentration of glomalin. The application of AMF can positively contribute to sustainable agriculture by reducing the use of chemical fertilizers while increasing crop growth.

Keywords

References

  1. George E, Marschner H, Jakobsen I. Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotechnol 1995;15:257-70. https://doi.org/10.3109/07388559509147412
  2. Hooker J, Jaizme-Vega M, Atkinson D. Biocontrol of plant pathogens using arbuscular mycorrhizal fungi. In: Gianinazzi S, Schuepp H, editors. Basel: Birkhauser Verlag; 1994. pp. 191-200.
  3. Davies Jr FT, Potter JR, Linuerman RG. Drought resistance of mycorrhizal pepper plants independent of leaf P concentration-response in gas exchange and water relations. Physiol Plant 1993;87:45-53. https://doi.org/10.1034/j.1399-3054.1993.870108.x
  4. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soil 2003;37:1-16. https://doi.org/10.1007/s00374-002-0546-5
  5. Rillig MC, Steinberg PD. Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification? Soil Biol Biochem 2002;34:1371-4. https://doi.org/10.1016/S0038-0717(02)00060-3
  6. Steinberg PD, Rillig MC. Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biol Biochem 2003;35:191-4. https://doi.org/10.1016/S0038-0717(02)00249-3
  7. Smith SE, Read DJ. Mycorrhizal symbiosis. London: Academic Rress; 2010.
  8. Borie F, Rubio R, Rouanet JL, Morales A, Borie G, Rojas C. Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean ultisol. Soil Tillage Res 2006;88:253-61. https://doi.org/10.1016/j.still.2005.06.004
  9. Castillo CG, Rubio R, Rouanet JL, Borie F. Early effects of tillage and crop rotation on arbuscular mycorrhizal fungal propagules in an ultisol. Biol Fertil Soil 2006;43:83-92. https://doi.org/10.1007/s00374-005-0067-0
  10. Schreiner RP, Bethlenfalvay GJ. Mycorrhizal interactions in sustainable agriculture. Crit Rev Biotechnol 1995;15:271-85. https://doi.org/10.3109/07388559509147413
  11. Gianinazzi S, Vosatka M. Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 2004;82:1264-71. https://doi.org/10.1139/b04-072
  12. Mondelaers K, Aertsens J, Van Huylenbroeck G. A meta-analysis of the differences in environmental impacts between organic and conventional farming. Br Food J 2009;111:1098-119. https://doi.org/10.1108/00070700910992925
  13. Manoharan L, Rosenstock NP, Williams A, Hedlund K. Agricultural management practices influence AMF diversity and community composition with cascading effects on plant productivity. Appl Soil Ecol 2017;115:53-9. https://doi.org/10.1016/j.apsoil.2017.03.012
  14. Lee SW, Lee EH, Eom AH. Effects of organic farming on communities of arbuscular myeorrhizal fungi. Mycobiology 2008;36:19-23. https://doi.org/10.4489/MYCO.2008.36.1.019
  15. Lee JE, Eom AH. Effect of organic farming on spore diversity of arbuscular mycorrhizal fungi and glomalin in soil. Mycobiology 2009;37:272-6. https://doi.org/10.4489/MYCO.2009.37.4.272
  16. Park HM, Kang HW, Kang UG, Park KB, Lee SS, Song SD. Effects of arbuscular mycorrhiza inoculation and phosphorus application on early growth of hot pepper (Capsicum annum L.). Korean J Soil Sci Fertil 1999;32:68-75.
  17. Kim SJ, Eo JK, Lee EH, Park H, Eom AH. Effects of arbuscular mycorrhizal fungi and soil conditions on crop plant growth. Mycobiology 2017;45:20-4. https://doi.org/10.5941/MYCO.2017.45.1.20
  18. Daniels BA. Skipper HA, editors. Methods for the recovery and quantitative estimation of propagules from soil. In: Daniels BA. Skipper HA, editors. St. Paul, Minn: American Phytopathological Society; 1982.
  19. Gollotte A, Van Tuinen D, Atkinson D. Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 2004;14:111-7. https://doi.org/10.1007/s00572-003-0244-7
  20. Becard G, Fortin JA. Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 1988;108:211-8. https://doi.org/10.1111/j.1469-8137.1988.tb03698.x
  21. Koske RE, Gemma JN. A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 1989;92:486-8. https://doi.org/10.1016/s0953-7562(89)80195-9
  22. Jaizme-Vega MC, Rodriguez-Romero AS, Hermoso CM, Declerck S. Growth of micropropagated bananas colonized by root-organ culture produced arbuscular mycorrhizal fungi entrapped in Ca-alginate beads. Plant Soil 2003;254:329-35. https://doi.org/10.1023/A:1025523632413
  23. Wright SF, Upadhyaya A. Quantification of arbuscular mycorrhizal fungi activity by the glomalin concentration on hyphal traps. Mycorrhiza 1999;8:283-5. https://doi.org/10.1007/s005720050247
  24. Wright SF, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 1996;161:575-86. https://doi.org/10.1097/00010694-199609000-00003
  25. Rosier CL, Hoye AT, Rillig MC. Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biol Biochem 2006;38:2205-11. https://doi.org/10.1016/j.soilbio.2006.01.021
  26. Schindler FV, Mercer EJ, Rice JA. Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biol Biochem 2007;39:320-9. https://doi.org/10.1016/j.soilbio.2006.08.017
  27. Mena-Violante HG, Ocampo-Jimenez O, Dendooven L, Martinez-Soto G, Gonzalez-Castaneda J, Davies FT, Olalde-Portugal V. Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv. San Luis) plants exposed to drought. Mycorrhiza 2006;16:261-7. https://doi.org/10.1007/s00572-006-0043-z
  28. Aguilera-Gomez L, Davies FJ, Olalde-Portugal V, Duray S, Phavaphutanon L. Influence of phosphorus and endomycorrhiza (Glomus intraradices) on gas exchange and plant growth of chile ancho pepper (Capsicum annuum L. cv. San Luis). Photosynthetica 1999;36:441-9. https://doi.org/10.1023/A:1007032320951
  29. Latef AAHA, Chaoxing H. Does inoculation with Glomus mosseae improve salt tolerance in pepper plants? J Plant Growth Regulation 2014;33:644-53. https://doi.org/10.1007/s00344-014-9414-4
  30. Castillo C, Sotomayor L, Ortiz C, Leonelli G, Borie F, Rubio R. Effect of arbuscular mycorrhizal fungi on an ecological crop of chili peppers (Capsicum annuum L.). Chilean J Agric Res 2009;69:79-87.
  31. Cavagnaro TR, Gao LL, Smith FA, Smith SE. Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol 2001;151:469-75. https://doi.org/10.1046/j.0028-646x.2001.00191.x