Acknowledgement
This work was supported by the Golden Seed Project of 'Breeding of new strains of shiitake for cultivar protection and substitution of import [213007-05-5-SBH10]' provided by the Ministry of Agriculture, Food and Rural Affairs, Ministry of Oceans and Fisheries, Rural Development Administration and Korea Forest Service.
References
- Lundell TK, Makela MR, Hilden K. Lignin-modifying enzymes in filamentous basidiomycetes-ecological, functional and phylogenetic review. J Basic Microbiol 2010;50:5-20. https://doi.org/10.1002/jobm.200900338
- Zotti M, Persiani AM, Ambrosio E, Vizzini A, Venturella G, Donnini D, Angelini P, Piazza SD, Pavarino M, Lunghini D, et al. Macrofungi as ecosystem resources: conservation versus exploitation. Plant Biosyst 2013;147:219-25. https://doi.org/10.1080/11263504.2012.753133
- Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT, Abeywickrama PD, Aluthmuhandiram JVS, Brahamanage RS, Brooks S, et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 2019;97:1-136. https://doi.org/10.1007/s13225-019-00430-9
- Sun L, Zhang Z, Xin G, Sun B, Bao X, Wei Y, Zhao X, Xu H. Advances in umami taste and aroma of edible mushrooms. Trends Food Sci Tech 2020;96:176-87. https://doi.org/10.1016/j.tifs.2019.12.018
- Reis FS, Martins A, Vasconcelos MH, Morales P, Ferreira. ICFR. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci Tech 2017;66:48-62. https://doi.org/10.1016/j.tifs.2017.05.010
- Lu H, Lou H, Hu J, Liu Z, Chen Q. Macrofungi: a review of cultivation strategies, bioactivity, and application of mushrooms. Compr Rev Food Sci Food Saf 2020;19:2333-56. https://doi.org/10.1111/1541-4337.12602
- Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, Petrovic P, Niksic M, Vrvic MM, van Griensven L. Antioxidants of edible mushrooms. Molecules 2015;20:19489-525. https://doi.org/10.3390/molecules201019489
- Khonde PL, Jardine A. Improved synthesis of the super antioxidant, ergothioneine, and its biosynthetic pathway intermediates. Org Biomol Chem 2015;13:1415-9. https://doi.org/10.1039/C4OB02023E
- Kalaras MD, Richie JP, Calcagnotto A, Beelman RB. Mushrooms: a rich source of the antioxidants ergothioneine and glutathione. Food Chem 2017;233:429-33. https://doi.org/10.1016/j.foodchem.2017.04.109
- Yoon SY, Park SJ, Park YJ. The anticancer properties of cordycepin and their underlying mechanisms. Int J Mol Sci 2018;19:3027. https://doi.org/10.3390/ijms19103027
- Qin P, Li X, Yang H, Wang ZY, Lu D. Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules 2019;24:2231. https://doi.org/10.3390/molecules24122231
- Lee S, Lee D, Lee JC, Kang KS, Ryoo R, Park HJ, Kim KH. Bioactivity-guided isolation of anti-inflammatory constituents of the rare mushroom Calvatia nipponica in LPS-stimulated RAW264.7 macrophages. Chem Biodivers 2018;15:e1800203.
- Lee SR, Seok S, Ryoo R, Choi SU, Kim KH. Macrocyclic trichothecene mycotoxins from a deadly poisonous mushroom, Podostroma cornu-damae. J Nat Prod 2019;82:122-8. https://doi.org/10.1021/acs.jnatprod.8b00823
- Yang SO, Sodaneath H, Lee JI, Jung H, Choi JH, Ryu HW, Cho KS. Decolorization of acid, disperse and reactive dyes by Trametes versicolor CBR43. J Environ Sci Health A Tox Hazard Subst Environ Eng 2017;52:862-72. https://doi.org/10.1080/10934529.2017.1316164
- da Luz JM, Paes SA, Nunes MD, da Silva MC, Kasuya MC. Degradation of oxobiodegradable plastic by Pleurotus ostreatus. PLoS One 2013;8:e69386. https://doi.org/10.1371/journal.pone.0069386
- Gomez-Mendez LD, Moreno-Bayona DA, Poutou-Pinales RA, Salcedo-Reyes JC, PedrozaRodriguez AM, Vargas A, Bogoya JM. Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus. PLoS One 2018;13:e0203786. https://doi.org/10.1371/journal.pone.0203786
- Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA 2012;109:6241-6. https://doi.org/10.1073/pnas.1117018109
- Xu, J. Fungal DNA barcoding. Genome 2016;59:913-32. https://doi.org/10.1139/gen-2016-0046
- Ben-Amar A, Oueslati S, Mliki A. Universal direct PCR amplification system: a time- and cost-effective tool for high-throughput applications. 3 Biotech 2017;7:246. https://doi.org/10.1007/s13205-017-0890-7
- Chen Y, Bi C, Tong S, Gong Z, Hou H. An improved and reliable method for microalgae direct PCR. J Appl Phycol 2019;31:2411-21. https://doi.org/10.1007/s10811-019-01768-y
- Li Y, Zhao H, Yan X, Li M, Chen P, Zhang S. A universal method for direct PCR amplification of plant tissues. Anal Methods 2017;9:1800-5. https://doi.org/10.1039/C6AY03156K
- Choudhary P, Das S, Chakdar H, Singh A, Goswami SK, Saxena AK. Rapid high throughput template preparation (rHTTP) method: a novel cost effective method of direct PCR for a wide range of plants. BMC Biotechnol 2019;19:69. https://doi.org/10.1186/s12896-019-0560-4
- Iotti M, Zambonelli A. A quick and precise technique for identifying ectomycorrhizas by PCR. Mycol Res 2006;110:60-5. https://doi.org/10.1016/j.mycres.2005.09.010
- Walch G, Knapp M, Rainer G, Peintner U. Colony-PCR is a rapid method for DNA amplification of hyphomycetes. J Fungi 2016;2:12. https://doi.org/10.3390/jof2020012
- Bonito G. Fast DNA-based identification of the black truffle Tuber melanosporum with direct PCR and species-specific primers. FEMS Microbiol Lett 2009;301:171-5. https://doi.org/10.1111/j.1574-6968.2009.01812.x
- Izumitsu K, Hatoh K, Sumita T, Kitade Y, Morita A, Tanaka C, Gafur A, Ohta A, Kawai M, Yamanaka T, et al. Rapid and simple preparation of mushroom DNA directly from colonies and fruiting bodies for PCR. Mycoscience 2012;53:396-401. https://doi.org/10.1007/s10267-012-0182-3
- Wang Y, Xu D, Liu D, Sun X, Chen Y, Zheng L, Chen L, Ma A. A rapid and effective colony PCR procedure for screening transformants in several common mushrooms. Mycobiology 2019;47:350-4. https://doi.org/10.1080/12298093.2019.1628523
- Kreader CA. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 1996;62:1102-6. https://doi.org/10.1128/aem.62.3.1102-1106.1996
- Innis MA, Myambo KB, Gelfand DH, Brow MA. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci USA 1988;85:9436-40. https://doi.org/10.1073/pnas.85.24.9436
- Nagai M, Yoshida A, Sato N. Additive effects of bovine serum albumin, dithiothreitol, and glycerol on PCR. IUBMB Life 1998;44:157-63. https://doi.org/10.1080/15216549800201172
- Musso M, Bocciardi R, Parodi S, Ravazzolo R, Ceccherini I. Betaine, dimethyl sulfoxide, and 7-deaza-dGTP, a powerful mixture for amplification of GC-rich DNA sequences. J Mol Diagn 2006;8:544-50. https://doi.org/10.2353/jmoldx.2006.060058
- Rees WA, Yager TD, Korte J, von Hippel PH. Betaine can eliminate the base pair composition dependence of DNA melting. Biochemistry 1993;32:137-44. https://doi.org/10.1021/bi00052a019
- Bachmann B, Luke W, Hunsmann G. Improvement of PCR amplified DNA sequencing with the aid of detergents. Nucleic Acids Res 1990;18:1309. https://doi.org/10.1093/nar/18.5.1309
- Ha B, Moon YJ, Song Y, Kim S, Kim M, Yoon CW, Ro HS. Molecular analysis of B mating type diversity in Lentinula edodes. Sci Hortic 2019;243:55-63. https://doi.org/10.1016/j.scienta.2018.08.009
- Au CH, Wong MC, Bao D, Zhang M, Song C, Song W, Law PTW, Kues U, Kwan HS. The genetic structure of the A mating-type locus of Lentinula edodes. Gene 2014;535:184-90. https://doi.org/10.1016/j.gene.2013.11.036
- Wong KS, Cheung MK, Au CH, Kwan HS. A novel Lentinula edodes laccase and its comparative enzymology suggest guaiacol-based laccase engineering for bioremediation. PLoS One 2013;8:e66426. https://doi.org/10.1371/journal.pone.0066426
- Sano H, Narikiyo T, Kaneko S, Yamazaki T, Shishido K. Sequence analysis and expression of a blue-light photoreceptor gene, Le.phrA from the basidiomycetous mushroom Lentinula edodes. Biosci Biotechnol Biochem 2007;71:2206-13. https://doi.org/10.1271/bbb.70170
- Carbonell LM, Kanetsuna F, Gil F. Chemical morphology of glucan and chitin in the cell wall of the yeast phase of Paracoccidioides brasiliensis. J Bacteriol 1970;101:636-42. https://doi.org/10.1128/jb.101.2.636-642.1970
- Ehren HL, Appels FVW, Houben K, Renault MAM, Wosten HAB, Baldus M. Characterization of the cell wall of a mushroom forming fungus at atomic resolution using solid-state NMR spectroscopy. Cell Surf 2020;6:100046. https://doi.org/10.1016/j.tcsw.2020.100046
- Olive DM, Simsek M, Al-Mufti S. Polymerase chain reaction assay for detection of human cytomegalovirus. J Clin Microbiol 1989;27:1238-42. https://doi.org/10.1128/jcm.27.6.1238-1242.1989
- Watanabe M, Abe K, Aoki M, Kameya T, Itoyama Y, Shoji M, Ikeda M, Iizuka T, Hirai S. A reproducible assay of polymerase chain reaction to detect trinucleotide repeat expansion of Huntington's disease and senile chorea. Neurol Res 1996;18:16-8. https://doi.org/10.1080/01616412.1996.11740370
- Ralser M, Querfurth R, Warnatz HJ, Lehrach H, Yaspo ML, Krobitsch S. An efficient and economic enhancer mix for PCR. Biochem Biophys Res Commun 2006;347:747-51. https://doi.org/10.1016/j.bbrc.2006.06.151
- Li FW, Kuo LY, Huang YM, Chiou WL, Wang CN. Tissue-direct PCR, a rapid and extraction-free method for barcoding of ferns. Mol Ecol Resour 2010;10:92-5. https://doi.org/10.1111/j.1755-0998.2009.02745.x
- Mok E, Wee E, Wang Y, Trau M. Comprehensive evaluation of molecular enhancers of the isothermal exponential amplification reaction. Sci Rep 2016;6:37837. https://doi.org/10.1038/srep37837
- Wang Y, Prosen DE, Mei L, Sullivan JC, Finney M, Vander Horn PB. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Res 2004;32:1197-1207. https://doi.org/10.1093/nar/gkh271