참고문헌
- Arisanty, D., and Nur Saputra, A. (2017). "Remote sensing studies of suspended sediment concentration variation in barito delta." IOP Conference Series: Earth and Environmental Science, Yogyakarta, Indonesia, Vol. 98, pp. 0-6, doi: 10.1088/1755-1315/98/1/012058.
- Beschta, R.L., Bilby, R.E., Brown, G.W., Holtby, L.B., and Hofstra, T.D. (1987). "Stream temperature and aquatic habitat; fisheries and forestry interactions." Streamside management forestry and fishery interactions, Edited by Salo, E.O., Cundy, T.W., University of Washington, Institute of Forest Resources, Contribution No 57: Seattle, WA, pp. 191-232.
- Bhargava, D.S., and Mariam, D.W. (1991). "Light penetration depth, turbidity and reflectance related relationships and models." ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 46, No. 4, pp. 217-230, doi: 10.1016/0924-2716(91)90055-Z.
- Caballero, I., Steinmetz, F., and Navarro, G. (2018). "Evaluation of the first year of operational Sentinel-2A data for retrieval of suspended solids in medium- to high-turbidity waters." Remote Sensing, Vol. 10, No. 7, p. 982, doi: 10.3390/rs10070982.
- Chen, Z.M., Hanson, J.D., and Curran, P.J. (1991). "The form of the relationship between suspended sediment concentration and spectral reflectance‒Its implications for the use of Daedalus 1268 data." International Journal of Remote Sensing, Vol. 12, No. 1, pp. 215-222, doi: 10.1080/01431169108929647.
- Chi, M., Feng, R., and Bruzzone, L. (2008). "Classification of hyper-spectral remote-sensing data with primal SVM for small-sized training dataset problem." Advances in Space Research, Vol. 41, pp. 1793-1799, doi: 10.1016/j.asr.2008.02.012.
- Chu, V.W., Smith, L.C., Rennermalm, A.K., Forster, R.R., Box, J.E., and Rech, N. (2009). "Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet." Journal of Glaciology, Vol. 55, No. 194, 1072e1082. https://doi.org/10.3189/002214309790794904
- Dekkera, A.G., Vosb, R.J., and Petersb, S.W.M. (2001). "Comparison of remote sensing data, model results and in-situ data for to- tal suspended matter zTSM/in the southern Frisian lakes." Science of the Total Environment, Vol. 268, pp. 197-214, doi: 10.1016/S0048-9697(00)00679-3.
- Dethier, E.N., Renshaw, C.E., and Magilligan, F.J. (2020). "Toward Improved accuracy of remote sensing approaches for quantifying suspended sediment: Implications for suspended sediment monitoring." Journal of Geophysical Research. Earth Surface, Vol. 125, No. 7, e2019JF005033, doi: 10.1029/2019JF005033.
- Doxaran, D., Froidifond, J.M., and Castaing, P. (2003). "Remote-sensing reflectance of turbid sediment-dominated waters, reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios." Applied Optics, Vol. 42, No. 15, 2623e2634. https://doi.org/10.1364/AO.42.002623
- Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., and Li, X. (2016). "Water bodies' mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the swir band." Remote Sensing, Vol. 8, No. 4, p. 354. doi: 10.3390/rs8040354.
- Fang, G., Chen, S., Wang, H., Qian, J., and Zhang, L. (2010). "Detecting marine intrusion into rivers using EO-1 ALI satellite imagery: Modaomen Waterway, Pearl River Estuary, China." International Journal of Remote Sensing, Vol. 31, No. 15, 4125e4146. https://doi.org/10.1080/01431160903229218
- Gin, K.Y.H., Koh, S.T., and Lin, I.I. (2003). "Spectral irradiance profiles of suspended marine clay for the estimation of suspended sediment concentration in tropical waters." International Journal of Remote Sensing, Vol. 24, pp. 3235-3245. doi: 10.1080/01431160110114934.
- Guyon, I., Weston, J., Barnhil,l S., and Vapnik, V. (2002). "Gene selection for cancer classification using support vector machines." Machine Learning, Vol. 46, pp. 389-422. https://doi.org/10.1023/a:1012487302797
- Islam, A., Gao, J., Ahmad, W., Neil, D., and Bell, P. (2003). "Image calibration to like- values in mapping shallow water quality from multi temporal data." Photo- grammetric Engineering & Remote Sensing, Vol. 69, No. 5, 567e575. https://doi.org/10.14358/PERS.69.5.567
- Islam, M.R., Yamaguchi, Y., and Ogawa, K., (2001). "Suspended sediment in the Ganges and Brahmaputra Rivers in Bangladesh: Observation from TM and AVHRR data." Hydrological Processes. Vol. 15, pp. 493-509, doi: 10.1002/hyp.165.
- Ismail, K., Boudhar, A., Abdelkrim, A., Mohammed, H., Mouatassime, S., Kamal, A., Driss, E., Idrissi, E., and Nouaim, W. (2019). "Evaluating the potential of Sentinel-2 satellite images for water quality characterization of artificial reservoirs: The Bin El Ouidane Reservoir case study (Morocco)." Meteorology Hydrology and Water Management, Vol. 7, No. 1, pp. 31-39, doi: 10.26491/mhwm/95087.
- Joshi, I.D., D'Sa, E.J., Osborn, C.L, and Bianchi, T.S. (2017). "Turbidity in Apalachicola Bay, Florida from Landsat 5 TM and field data: Seasonal patterns and response to extreme events." Remote Sensing, Vol. 9, p. 367. https://doi.org/10.3390/rs9040367
- Lim, J., and Choi, M. (2015). "Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea." Environmental Monitoring and Assessment, Vol. 187, pp. 1-17. doi: 10.1007/s10661-015-4616-1.
- Liu, H., Li, Q., Shi, T., Hu, S., Wu, G., and Zhou, Q., (2017). "Application of sentinel 2 MSI images to retrieve suspended particulate matter concentrations in Poyang Lake." Remote Sensing, Vol. 9, p. 761. doi: 10.3390/rs9070761.
- Lodhi, M.A., Rundquist, D.C., Han, L., Kuzila, M.S. (1997). "The potential for remote sensing of loess soils suspended in surface waters." Journal of the American Water Resources Association, Vol. 33, No. 1, pp. 111-117. https://doi.org/10.1111/j.1752-1688.1997.tb04087.x
- Ma, R., and Dai, J. (2005). "Investigation of chlorophyll-a and total suspended matter concentrations using landsat ETM and field spectral measurement in Taihu Lake, China." International Journal of Remote Sensing, Vol. 26, pp. 2779-2795, doi: 10.1080/01431160512331326648.
- Novo, E.M.M., Hansom, J.D., and Curran, P.J. (1989). "The effect of sediment type on the relationship between reflectance and suspended sediment concentration." International Journal of Remote Sensing, Vol. 10, No. 7, pp. 1283-1289. doi: 10.1080/01431168908903967.
- Osadchiev, A. (2015). "A method for quantifying freshwater discharge rates from satellite observations and Lagrangian numerical modeling of river plumes." Environmental Research Letters, Vol. 10, 085009, doi: 10.1088/1748-9326/10/8/085009.
- Pal, M., and Foody, G.M. (2010). "Feature selection for classification of hyperspectral data by SVM." IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, pp. 2297-2307. doi: 10.1109/TGRS.2009.2039484.
- Peterson, K.T., Sagan, V., Sidike, P., Cox, A.L., and Martinez, M. (2018). "Suspended sediment concentration estimation from landsat imagery along the lower missouri and middle Mississippi Rivers using an extreme learning machine." Remote Sensing, Vol. 10, No. 10, 1503, doi: 10.3390/rs10101503.
- Pham, Q.V., Ha, N.T.T., Pahlevan, N., Oanh, L.T., Nguyen, T.B., and Nguyen, N.T. (2018). "Using landsat-8 images for quantifying suspended sediment concentration in red river (Northern Vietnam)." Remote Sensing, Vol. 10, No. 11, 1841. doi: 10.3390/rs10111841.
- Shi, H., Cao, Y., Dong, C., Xia, C., and Li, C. (2018). "The spatiotemporal evolution of river island based on Landsat satellite imagery, hydrodynamic numerical simulation and observed data." Remote Sensing, Vol. 10, No. 12, 2046. doi: 10.3390/rs10122046.
- Svab, E., Tyler, A.N., Preston, T., Presing, M., and Balogh, K.V. (2005) "Characterizing the spectral reflectance of algae in lake waters with high suspended sediment concentrations." International Journal of Remote Sensing, Vol. 26, pp. 919-928. https://doi.org/10.1080/0143116042000274087
- Umar, M., Rhoads, B.L., and Greenberg, J.A. (2018). "Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences." Journal of Hydrology, Vol. 556, pp. 325-338. doi: 10.1016/j.jhydrol.2017.11.026.
- Vanhellemont, Q., and Ruddick, K. (2015). "Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8." Remote Sensing of Environment, Vol. 161, pp. 89-106. doi: 10.1016/j.rse.2015.02.007.
- Vanhellemont, Q., and Ruddick, K. (2016) "ACOLITE For Sentinel-2: Aquatic Applications of MSI Imagery." Proceedings of Living Planet Symposium 2016, Prague, Czech Republic, Vol. 740, p. 55.
- Vapnik, V. (1995). The nature of statistical learning theory, Springer-Verlag, NY, U.S.
- Wang, J.J., and Lu, X.X. (2010). Estimation of suspended sediment concentrations using Terra MODIS: An example from the Lower Yangtze River, China. Science of the Total Environment, Vol. 408, No. 5, 1131e1138. https://doi.org/10.1016/j.scitotenv.2009.11.057
- Wang, J.J., Lu, X.X., Liew, S.C., and Zhou, Y. (2010). "Remote sensing of suspended sediment concentrations of large rivers using multi-temporal MODIS images: An example in the middle and lower Yangtze River, China." International Journal of Remote Sensing, Vol. 31, No. 4, pp. 1103-1111. https://doi.org/10.1080/01431160903330339
- Wang, J.J., Lu, X.X., Soo, C.L., and Yue, Z. (2009). Retrieval of suspended sediment concentrations in large turbid rivers using Landsat ETM+: An example from the Yangtze River, China. Earth Surface Processes and Landforms, Vol. 34, No. 8, 1082e1092. https://doi.org/10.1002/esp.1795
- Wright, D. (2018). "Sentinel-2 as a tool for quantifying suspended particulate matter in the Tamar Estuary." The Plymouth Student Scientist, Vol. 11, pp. 3-33.