DOI QR코드

DOI QR Code

2단 감압 수소레귤레이터의 연성해석 및 도금특성에 관한 연구

A Study of Fluid Structure Interaction Analysis and Coating Characteristics of a Two-stage Pressure Reduction Hydrogen Regulator

  • 송재욱 (한국기술교육대학교 기계공학과) ;
  • 김승모 (한국기술교육대학교 기계공학과)
  • Song, Jae-Wook (Dep. of Mechanical Engineering, Korea University of Technology and Education) ;
  • KIM, Seung-Mo (Dep. of Mechanical Engineering, Korea University of Technology and Education)
  • 투고 : 2020.09.17
  • 심사 : 2021.01.08
  • 발행 : 2021.01.31

초록

수소연료전지차(FCEV)는 전기를 자체 생산하는 연료전지를 동력원으로 하고 있으며 기존 기계식 레귤레이터의 출구압은 시스템 사양에 의해 제작 시점에서 고정되며 순간적인 수소 공급량에 의한 출구압 강하가 발생하는 경우 수소의 공급유량이 부정확해지는 문제가 있다. 본 연구에서는 기존에 존재하는 1단 기계식 감압 레귤레이터를 보완하기 위한 2단 감압 레귤레이터의 형상 설계 및 재질 선정을 수행하였다. 2단계 감압을 통한 맥동과 느린 응답을 보상하고 고압 편차 문제를 해결하기 위해 감압 유닛의 접촉면 형상을 가공성을 고려하여 설계하였다. 기밀성 측면에서 TPU의 변형량은 최대 15.82% 작은 변위량을 보였으며, 재질 선정에서는 2단 감압에 보편성을 확보하고 다양한 수소 연료 공급시스템에 적용 가능한 전자식 솔레노이드를 고려하여 자성체를 선정하고 적절한 도금 종류를 검증하기 위한 수소 취성 및 내식성 평가를 실시하였다. 시편의 표면 부식은 Cr 도금의 경우에서만 발생되지 않았으며, 인장 시험을 통해 부식과정간 연신율을 비교하였을 때, 2% 이내의 차이를 확인하였다.

In this study, shape design and material selection were carried out for a two-stage pressure-reducing regulator to compensate for the shortcomings of a one-stage mechanical decompression regulator. The shape of the contact surface of the depressurization unit was considered, material was selected, and the shape was designed to compensate for the pulsation and slow response through the two-stage decompression and to solve the problem of high pressure deviation. In terms of airtightness, the deformation amount of TPU showed a small amount of displacement of up to 15.82%. Considering the fact that it is applicable to various hydrogen fuel supply systems by securing universality by applying electronic solenoids to the second pressure reduction, magnetic materials were selected. The hydrogen embrittlement and corrosion resistance were evaluated to verify the plating process. Surface corrosion did not occur in only the case of Cr plating. The elongation during the corrosion process was compared using a tensile test, and there was a difference within 2%.

키워드

참고문헌

  1. Hwang, K. H., Kim, R. W., Kim, D. Y., Kim, C. M., Kim, S. R., "Evaluation of Pressure Regulator Spring Characteristics of Hydrogen Storage", Korean Society for Precision Engineering Autumn Conf., 135, 2019
  2. Drell, I. L., Belles, F. E., "Survey of hydrogen combustion properties", NACA, 1958
  3. Kwon, O. J., Jo, H. J., Chung, H. H., Myong, K. J., "Analysis and Modeling of Hydrogen Sales at Hydrogen Filling Stations", KSAE, Vol.27, No.2, pp. 93-100, 2019. DOI: https://doi.org/10.7467/KSAE.2019.27.2.093
  4. Ehret, O., & Bonhoff, K., "Hydrogen as a fuel and energy storage: Success factors for the German Energiewende", International Journal of Hydrogen Energy, Vol.40, No.15, pp. 5526-5533, 2015. DOI: https://doi.org/10.1016/j.ijhydene.2015.01.176
  5. Song, J. W., Jeon, W. J., Kim, S. M., "Flow-Structure interaction 2 Stage Pressure Reduction Hydrogen Regulator", Korean Society of Manufacturing Technology Engineers Autumn Conf., pp. 189., 2019
  6. Hwang, E. H., Seong, H. G., Kim, S. J., "Effect of Carbon Contents on Corrosion and Hydrogen Diffusion Behaviors of Ultra-Strong Steels for Automotive Applications", Korean Journal of Metals and Materials, Vol.56, No.8, pp. 570-579, 2018. DOI: https://dx.doi.org/10.3365/KJMM.2018.56.8.570
  7. Yang, W. S., Seo, J. W., Ahn, S. H., "A Study on Hydrogen Automotive Steel Sheets", Corrosion Science and Technology, Vol.17, No.4, 193-201, 2018. DOI: https://doi.org/10.14773/cst.2018.17.4.193
  8. B. Choudhary, J. Christopher., "Stage-II tensile work hardening behaviour of type 316L (N) austenitic stainless steel", Materials Science and Engineering: A., Vol. 651, pp.486-489, 2016. DOI: https://doi.org/10.1016/j.msea.2015.11.001
  9. Jo, N. K., Moon, S. J., Nam, C. W., Lee, H. K., Jeon, W. J., "Numerical Study on Internal Flow Analysis of High-pressure Gas Regulator", KSAE Annual Autumn Conf., pp.276, 2017.
  10. Park, H. J., Gi, S. K., Jang, S. G., Do, M. J., "High Pressure Check Valve Design for Prevention of Leakage Using FEM", KSPE Spring Conf., pp. 988-989, 2017.
  11. Son, W. S., Song, J. W., Jeon, W. J., Kim, S. M., "FEA(Finite Element Analysis) Study for Electronic Hydrogen Regulator of Confidentiality Improvement", Korea Academia-Industrial cooperation Society, Vol.20, No.9, pp.175-181, 2019. DOI: https://doi.org/10.5762/KAIS.2019.20.9.175
  12. Wilcox, D. C., "Turbulence modeling for CFD", CA: DCW industries, La Canada, 1998.
  13. Choi, I. H., Baek, S. H., Lee, T. H., Jhang, K. Y., "Evaluation of Fatigue Degradation in SUS316L Using Nonlinear Ultrasonics", Korean Society of Mechanical Engineers A, Vol.34, No.2, pp.145-152, 2010. DOI: https://doi.org/10.3795/ksme-a.2010.34.2.145
  14. KS, "Gas cylinders-Compatibility of cylinder and valve materials with gas contents-Part 1: Metallic materials", KS B ISO 11114-1:2012, Korea, 2002.
  15. Kim, T. W., Park, T. S., Jung, Y. S., Kang, Y. J., Lee, T. H., "Dynamics Study with DFT(Density Functional Theory) Calculation for Metal with a few Peripheral Electrons", Transactions of the Korean hydrogen and new energy society, Vol.25, No.3, pp. 234-239, 2014. DOI: https://doi.org/10.7316/KHNES.2014.25.3.234
  16. Kim, S. S., Han, J. G., "A Study on the enhancement of wear resistance and corrosion resistance of CrNx for a replacement for electroplated Cr coating", Korean journal of metal and materials, Vol.37, No.3, pp.314-320, 1999.
  17. KS, "Environmental testing Part 2-60: Tests Test Ke: Flowing mixed gas corrosion test", KS C IEC60068-2-60:2015, Korea, 2010.
  18. KS, "TEST PIECES FOR TENSILE TEST FOR METALLIC MATERIALS", KS B 0801:2007, Korea, 1975.