References
- Ahn, S. J., K. W. Jun, and K. I. Kim, 2000. Forecasting of runoff hydrograph using neural network algorithms. Journal of Korean Water Resources Association 33(4): 505-515. (in Korean)
- Asadi, H., H. Shahedi, B. Jarihani, and R. C. Sidle, 2019. Rainfall-runoff modelling using hydrological connectivity index and artificial neural network approach. Water 11(2): 212. doi:10.3390/w11020212.
- Campolo, M., P. Andreussi, and A. Soldati, 1999. River flood forecasting with a neural network model. Water Resources Research 35(4): 1191-1197. doi:10.1029/1998WR900086.
- Ghorbani, M. A., H. A. Zadeh, and M. Isazadeh, 2016. A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environmental Earth Sciences 75: 476. doi:10.1007/s12665-015-5096-x.
- Glorot, X., A. Bordes, and Y. Bengio, 2011. Deep sparse rectifier neural networks. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics 15: 315-323.
- Gomes, G. S. da S., T. B. Ludermir, and L. M. M. R. Lima, 2011. Comparison of new activation functions in neural network for forecasting financial time series. Neural Computing and Applications 20: 417-439. doi:10.1007/s00521-010-0407-3.
- Gunther, Frauke, and S. Fritsch, 2010. Neuralnet: training of neural networks. Journal of Hydrologic Engineering 2(1): 30-38. doi:10.1061/(ASCE)1084-0699(1999)4:2(135).
- Gupta, H. V., S. Sorooshian, and P. O. Yapo, 1999. Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. Journal of Hydrologic Engineering 4(2): 135-143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)
- Jung, S. H., D. E. Lee, and K. S. Lee, 2018. Prediction of river water level using deep-learning open library. Journal of the Korean Society of Hazard Mitigation 18(1): 1-11. doi:10.9798/KOSHAM.2018.18.1.1.
- Karunanithi, N., W. J. Grenney, D. Whitley, and K. Bovee, 1994. Neural networks for river flow prediction. Journal of Computing in Civil Engineering 8(2): 201-220. doi:10.1061/(ASCE)0887-3801(1994)8:2(201).
- Kim, S. W., 2000. A study on the forecasting of daily streamflow using the multilayer neural networks model. Journal of Korean Water Resources Association 33(5): 537-550. (in Korean)
- Kingma, D. P., and J. L. Ba, 2015. Adam: a method for stochastic optimization. 3rd International Conference for Learning Representations.
- Kisi, O., 2007. Streamflow forecasting using different artificial neural network algorithms. Journal of Hydrologic Engineering 12(5): 532-539. doi:10.1061/(ASCE)1084-0699(2007)12:5(532).
- Kumar, A. R. S., K. P. Sudheer, S. K. Jain, and P. K. Agarwal, 2005. Rainfall-runoff modelling using artificial neural networks: comparison of network types. Hydrological Processes 19(6): 127-1291. doi:10.1002/hyp.5581.
- Kurma, S., T. Roshini, and D. Himayoun, 2019. A comparison of emotional neural network (ENN) and artificial neural network (ANN) approach for rainfallrunoff modelling. Civil Engineering Journal 5(10): 2120-2130. doi:10.28991/cej-2019-03091398.
- Lee, K. S., S. C. Park, H. M. Lee, and Y. H. Jin, 2000. The study on the forecasting of runoff applied the B.P. Algorithm of the artificial neural network in the Young-San river. Journal of The Korean Society of Civil Engineers 20(5B): 679-688. (in Korean)
- Lin, Y., H. Wen, and S. Liu, 2019. Surface runoff response to climate change based on artificial neural network (ANN) models: a case study with Zagunao catchment in upper Minjiang river, southwest China. Journal of Water and Climate Change 10(1): 158-166. doi:10.2166/wcc.2018.130.
- Mishra, P. K., and S. Karmakar, 2019. Performance of optimum neural network in rainfall-runoff modeling over a river basin. International Journal of Environmental Science and Technology 16: 1289-1302. doi:10.1007/s13762-018-1726-7.
- Moriasi, D. N., M. W. Gitau, N. Pai, and P. Daggupati, 2015. Hydrologic and water quality models: performance measures and evaluation criteria. Transactions of the ASABE 50(6): 1763-1785. doi:10.13031/trans.58.10715.
- Nash, J. E. and V. Sutcliffe, 1970. River flow forecasting through conceptual models part I - a discussion of principles. Journal of Hydrology 10(3): 282-290. doi:10.1016/0022-1694(70)90255-6.
- Patel, A. B., and G. S. Joshi, 2017. Modeling of rainfallrunoff correlations using artificial neural network-a case study of Dharoi watershed of a Sabarmati river basin, India. Civil Engineering Journal 3(2): 78-87. doi:10.28991/cej-2017-00000074.
- Poonia, V., and H. L. Tiwari, 2020. Rainfall-runoff modeling for the Hoshangabad basin of Narmada river using artificial neural network. Arabian Journal of Geosciences 13: 944. doi:10.1007/s12517-020-05930-6.
- Pushpalatha, R., C. Perrin, N. L. Moine, and V. Andreassian, 2012. A review of efficiency criteria suitable for evaluating low-flow simulations. Journal of Hydrology 420: 171-182. doi:10.1016/j.jhydrol.2011.11.055.
- Ramachandran, P., B. Zoph, and Q. V. Le, 2017. Searching for activation functions. 6th International Conference on Learning Representations.
- Sarkar, A., and R. Kumar, 2012. Artificial networks for event based rainfall-runoff modeling. Journal of Water Resource and Protection 4(10): 891-897. doi:10.4236/jwarp.2012.410105.
- Shamseldin, A. Y., 2010. Artificial neural network model for river flow forecasting in a developing country. Journal of Hydroinformatics 12(1): 22-35. doi:10.2166/hydro.2010.027.
- Shamseldin, A. Y., A. E. Nasr, and K. M. O'Connor, 2002. Comparison of differeny forms of the multi-layer feed-forward neural network method used for river flow forecasting. Hydrology and Earth System Sciences 6(4): 671-684. doi:10.5194/hess-6-671-2002.
- Sharma, S., S. Sharma, and A. Athaiya, 2020. Activation functions in neural networks. International Journal of Engineering Applied Sciences and Technology 4(12): 310-316. https://doi.org/10.33564/IJEAST.2020.v04i12.054
- Sibi, P., S. A. Jones, and P. Siddarth, 2013. Analysis of different activation functions using back propagation neural networks. Journal of Theoretical and Applied Information Technology 47(3): 1344-1348.
- Song, C. M., and K. H. Lee, 2020. Applicability evaluation for discharge model using curve number and convolution neural network. Ecology and Resilient Infrastructure 7(2): 114-125. doi:10.17820/eri.2020.7.2.114.
- Sudheer, K. P., P. C. Nayak, and K. S. Ramasastri, 2003. Improving peak flow estimation in artificial neural network river flow models. Hydrological Processes 17(3): 677-686. doi:10.1002/hyp.5103.
- Tokar, A. S., and M. Markus, 2000. Precipitation-runoff modeling using artificial neural networks and conceptual models. Journal of Hydrologic Engineering 5(2): 156-161. doi:10.1061/(ASCE)1084-0699(1999)4:3(232).
- Yadav, A. K., V. K. Chandola, A. Singh, and B. P. Singh, 2020. Rainfall-runoff modelling using artificial neural networks (ANNs) model. International Journal of Current Microbiology and Applied Sciences 9(3): 127-135. doi:10.20546/ijcmas.2020.903.016.
- Yeo, W. K., Y. M. Seo, S. Y. Lee, and H. K. Ji, 2010. Study on water stage prediction using hybrid model of artificial neural network and genetic algorithm. Journal of Korean Water Resources Association 43(8): 721-731. (in Korean) doi:10.3741/JKWRA.2010.43.8.721.
- Yoon, K. H., B. C. Seo, and H. S. Shin, 2004. Dam inflow forecasting for short term flood based on neural networks in Nakdong river basin. Journal of Korean Water Resources Association 37(1): 67-75. (in Korean) https://doi.org/10.3741/JKWRA.2004.37.1.067
- Zadeh, M. R., S. Amin, D. Khalili, and V. P. Singh, 2010. Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions. Water Resources Management 24: 2673-2688. doi:10.1007/s11269-009-9573-4.