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A RESEARCH ON THE SPECIAL FUNCTIONS
BY USING q-TRIGONOMETRIC FUNCTIONS

MIN JI PARK

Abstract. In this paper, we introduce the concepts of q-cosine tangent
polynomials and q-sine tangent polynomials. From these polynomials, we
find some identities and properties by using q-numbers and q-trigonometric
functions.
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1. Introduction

In analytic number theory, some properties and identities for Bernoulli, Eu-
ler and Genocchi polynomials are usefully utilized (see [1, 2, 14]). According to
appearance of various extended versions of these polynomials, many mathemati-
cians have studied and discovered several research results on these polynomials
by using traditional theory and new techniques.

In 2013, Ryoo introduced the concept of tangent polynomials and developed
several properties of these polynomials (see [10]). Also, tangent numbers are
closely related to Euler and Genocchi numbers.
Definition 1.1. Tangent numbers Tn and tangent polynomials Tn(x) are defined
by means of generating functions as follows:

∞∑
n=0

Tn
tn

n!
=

2

e2t + 1
= 2

∞∑
m=0

(−1)me2mt

and
∞∑

n=0

Tn(x)
tn

n!
=

2

e2t + 1
etx = 2

∞∑
m=0

(−1)me(2m+x)t.

From Definition 1.1, we find the following theorems (see [4, 10, 13]).
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Theorem 1.2. Let m and n be positive integers. If m is odd, then the following
hold.

(i) Tn(x) = (−1)nTn(2− x).

(ii) Tn(x) = mn
m−1∑
i=0

(−1)iTn

(
2i+ x

m

)
.

Theorem 1.3. For any positive integer n, we have

Tn(x+ y) =

n∑
k=0

(
n

k

)
Tk(x)y

n−k.

Recently, mathematicians studied Bernoulli and Euler polynomials by com-
bining with trigonometric functions (see [7]). In [9], we investigated the extended
version of tangent polynomials and some properties on these polynomials.

Definition 1.4. Let x and y be real numbers. Then the cosine tangent poly-
nomials and the sine tangent polynomials are defined in terms of generating
functions as follows:

∞∑
n=0

CTn(x, y)
tn

n!
=

2

e2t + 1
etxcosty

and
∞∑

n=0

STn(x, y)
tn

n!
=

2

e2t + 1
etxsinty.

Theorem 1.5. Let k be a nonnegative integer and suppose that e2t ̸= −1. Then
the following hold.

(i)

n∑
k=0

(
n

k

)
2n−k

CTk(x, y) + CTn(x, y) = 2Cn(x, y).

(ii)

n∑
k=0

(
n

k

)
2n−k

STk(x, y) + STn(x, y) = 2Sn(x, y).

Theorem 1.6. Let x and y be real numbers. Then we have
(i) CTn(2 + x, y) + CTn(x, y) = 2Cn(x, y).

(ii) STn(2 + x, y) + STn(x, y) = 2Sn(x, y).

We next review some definitions related to q-numbers. (For more, the readers
can refer to [3, 8, 11, 12].) For any n ∈ N, the q-number is defined as follows:

[n]q =
1− qn

1− q
,

where q ̸= 1.
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Definition 1.7. The Gaussian binomial coefficients are defined by[
m
r

]
q

=

{
0 if r > m

(1−qm)(1−qm−1)···(1−qm−r+1)
(1−q)(1−q2)···(1−qr) if r ≤ m,

where m and r are nonnegative integers.
For r = 0, the value is 1 since the numerator and the denominator are both

empty products. Like the classical binomial coefficients, the Gaussian binomial
coefficients are center-symmetric. There are several analogues of the binomial
formula and this definition has a number of properties (see [3, 5, 8, 11, 12]).
Definition 1.8. The q-analogues of (x− a)n and (x+ a)n are defined by

(x⊖ a)nq =

{
1 if n = 0

(x− a)(x− qa) · · · (x− qn−1a) if n ≥ 1

and

(x⊕ a)nq =

{
1 if n = 0

(x+ a)(x+ qa) · · · (x+ qn−1a) if n ≥ 1,

respectively.
Definition 1.9. Let z be any complex number with |z| < 1. Then two forms of
q-exponential functions can be expressed as

eq(z) =

∞∑
n=0

zn

[n]q!
and Eq(z) =

∞∑
n=0

q(
n
2)

zn

[n]q!
.

From Definition 1.9, we note that (1) eq(x)eq(y) = eq(x+ y) if yx = qxy; (2)
eq(x)Eq(−x) = 1; and (3) eq−1(x) = Eq(x).
Definition 1.10. The q-derivative operator of any function f is

Dqf(x) =
f(x)− f(qx)

(1− q)x
(x ̸= 0) and Dqf(0) = f ′(0).

We can prove that f is differentiable at 0, and it is clear thatDqx
n = [n]qx

n−1.
Definition 1.11. In q-calculus, the q-trigonometric functions are given by

sinq(x) =
eq(ix)− eq(−ix)

2i
, SINq(x) =

Eq(ix)− Eq(−ix)
2i

cosq(x) =
eq(ix) + eq(−ix)

2
, COSq(x) =

Eq(ix) + Eq(−ix)
2

,

where SINq(x) = sinq−1(x) and COSq(x) = cosq−1(x) (see [6]).
The main purpose of this paper is to define the q-cosine tangent polynomials

and the q-sine tangent polynomials by using q-exponential functions and Defi-
nition 1.8. To find some properties of these polynomials, we use Cn,q(x, y) and
Sn,q(x, y). We obtain some relations among q-tangent polynomials, q-cosine tan-
gent polynomials and q-sine tangent polynomials. In addition, we derive q-partial
derivatives of q-cosine tangent polynomials and q-sine tangent polynomials by
using q-derivative.
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2. Main results

In this section, we define the q-cosine tangent polynomials and the q-sine tan-
gent polynomials by using q-analogues of (x+a)n and (x−a)n. We also find some
properties of these polynomials by applying q-power series of q-trigonometric
functions.

Theorem 2.1. Let x and y be real numbers and let i =
√
−1. Then the following

hold.

(i)

∞∑
n=0

Tn,q((x⊕ iy)q) + Tn,q((x⊖ iy)q)

2

tn

[n]q!
=

[2]q
eq(2t) + 1

eq(tx)COSq(ty).

(ii)

∞∑
n=0

Tn,q((x⊕ iy)q)− Tn,q((x⊖ iy)q)

2i

tn

[n]q!
=

[2]q
eq(2t) + 1

eq(tx)SINq(ty).

Proof. By substituting (x⊕ iy)q instead of z in q-tangent polynomials, we find
∞∑

n=0

Tn,q((x⊕ iy)q)
tn

[n]q!
=

[2]q
eq(2t) + 1

eq(tx)Eq(ity)

=
[2]q

eq(2t) + 1
eq(tx) (COSq(ty) + iSINq(ty)) .

(2.1)

By substituting (x⊖ iy)q instead of z in q-tangent polynomials, we also find
∞∑

n=0

Tn,q((x⊖ iy)q)
tn

[n]q!
=

[2]q
eq(2t) + 1

eq(tx)Eq(−ity)

=
[2]q

eq(2t) + 1
eq(tx) (COSq(ty)− iSINq(ty)) .

(2.2)

Now, (i) comes from the sum of (2.1) and (2.2), and (ii) can be obtained by
subtracting (2.1) by (2.2). �

Definition 2.2. Let x and y be real numbers. Then the q-cosine tangent poly-
nomials and the q-sine tangent polynomials are defined in terms of generating
functions as follows:

∞∑
n=0

CTn,q(x, y)
tn

[n]q!
=

[2]q
eq(2t) + 1

eq(tx)COSq(ty)

and
∞∑

n=0

STn,q(x, y)
tn

[n]q!
=

[2]q
eq(2t) + 1

eq(tx)SINq(ty).

By Theorem 2.1 and Definition 2.2, we obtain
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Corollary 2.3.

(i) CTn,q(x, y) =
Tn,q((x⊕ iy)q) + Tn,q((x⊖ iy)q)

2
.

(ii) STn,q(x, y) =
Tn,q((x⊕ iy)q)− Tn,q((x⊖ iy)q)

2i
.

Here, we remark that Cn,q(x, y) and Sn,q(x, y) were considered in [7, 9]. From
[7], we can know that Cn,q(x, y) and Sn,q(x, y) are very useful polynomials to
find identities of polynomials and relations of another polynomials. Recall that
∞∑

n=0

Cn,q(x, y)
tn

[n]q!
= eq(tx)COSq(ty) and

∞∑
n=0

Sn,q(x, y)
tn

[n]q!
= eq(tx)SINq(ty).

Theorem 2.4. Let Tn,q(x, y) denote the q-tangent polynomials. For |q| < 1, the
following relations hold.

(i) CTn,q(x, y) =

n∑
k=0

[
n
k

]
q

Tk,qCn−k,q(x, y),

(ii) STn,q(x, y) =

n∑
k=0

[
n
k

]
q

Tk,qSn−k,q(x, y),

Proof. (i) From the definition of q-cosine tangent polynomials, we derive a rela-
tion between q-tangent polynomials and q-cosine tangent polynomials as (2.3):

∞∑
n=0

CTn,q(x, y)
tn

[n]q!
=

∞∑
n=0

Tn,q
tn

[n]q!

∞∑
n=0

Cn,q(x, y)
tn

[n]q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

Tk,qCn−k,q(x, y)

)
tn

[n]q!

(2.3)

By comparing the both sides of (2.3), we get the required result.
(ii) By using the Cauchy product in the definition of q-sine tangent polyno-

mials, we obtain the required relation. �
By setting q → 1 in Theorem 2.4, we obtain

Corollary 2.5.

(i) CTn(x, y) =

n∑
k=0

(
n

k

)
TkCn−k(x, y),

(ii) STn(x, y) =

n∑
k=0

(
n

k

)
TkSn−k(x, y).

In q-calculus, we note that

COSq(x) =

∞∑
n=0

(−1)nq(2n−1)n x2n

[2n]q!
and SINq(x) =

∞∑
n=0

(−1)nq(2n+1)n x2n+1

[2n+ 1]q!
.

(2.4)
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For a real number x, [x] denotes the greatest integer not exceeding x.

Theorem 2.6. Let Tn,q(x) be the q-tangent polynomials. Let |q| < 1 and let n
be a nonnegative integer. Then the following hold.

(i) CTn,q(x, y) =

[n2 ]∑
k=0

[
n
2k

]
q

(−1)kq(2k−1)kTn−2k,q(x)y
2k,

(ii) STn,q(x, y) =

[n−1
2 ]∑

k=0

[
n

2k + 1

]
q

(−1)kq(2k+1)kTn−(2k+1),q(x)y
2k+1,

Proof. (i) By using the power series of COSq(x) in the generating function of
q-cosine tangent polynomials, we derive
∞∑

n=0

CTn,q(x, y)
tn

[n]q!
=

∞∑
n=0

CTn,q(x)
tn

[n]q!
(−1)nq(2n−1)ny2n

t2n

[n]q!

=

∞∑
n=0

(
n∑

k=0

(−1)kq(2k−1)kTn−k,q(x)y
2k

)
tn+k

[n− k]q![2k]q!

=

∞∑
n=0

(
n∑

k=0

[
n+ k
2k

]
q

(−1)kq(2k−1)kTn−k,q(x)y
2k

)
tn+k

[n+ k]q!
.

(2.5)
From (2.5), we can complete the proof.

(ii) By using the right equation of (2.4) for the generating function of q-sine
tangent polynomials, we find the desired result. �

By putting y = 1 in Theorem 2.6, we obtain

Corollary 2.7.

(i) CTn,q(x, 1) =

[n2 ]∑
k=0

[
n
2k

]
q

(−1)kq(2k−1)kTn−2k,q(x).

(ii) STn,q(x, 1) =

[n−1
2 ]∑

k=0

[
n

2k + 1

]
q

(−1)kq(2k+1)kTn−(2k+1),q(x).

Theorem 2.8. Suppose that eq(2t) ̸= −1. Then we have

(i) [2]qCn,q(x, y) =

n∑
k=0

[
n
k

]
q

2n−k
CTk,q(x, y) + CTn,q(x, y),

(ii) [2]qSn,q(x, y) =

n∑
k=0

[
n
k

]
q

2n−k
STk,q(x, y) + STn,q(x, y).
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Proof. (i) If eq(2t) ̸= −1, then we can multiply eq(2t)+1 in the q-cosine tangent
polynomials as

∞∑
n=0

CTn,q(x, y)
tn

[n]q!
(eq(t) + 1) = [2]qeq(tx)COSq(tx)

= [2]q

∞∑
n=0

Cn,q(x, y)
tn

[n]q!
.

(2.6)

The left-hand side in (2.6) can be expressed as
∞∑

n=0

CTn,q(x, y)
tn

[n]q!
(eq(2t) + 1)

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

2n−k
CTk,q(x, y) + CTn,q(x, y)

)
tn

[n]q!
.

(2.7)

From (2.6) and (2.7), we finish the proof.
(ii) By using the power series of q-sine function, we find the desired result. �

By setting q → 1 in Theorem 2.8, we have

Corollary 2.9. Let CTn(x, y) be the cosine tangent polynomials and let STn(x, y)
be the sine tangent polynomials. Then the following hold.

(i) 2Cn(x, y) =

n∑
k=0

(
n

k

)
2n−k

CTk(x, y) + CTn(x, y),

(ii) 2Sn(x, y) =

n∑
k=0

(
n

k

)
2n−k

STk(x, y) + STn(x, y),

From Theorem 2.8, the following result holds.

Corollary 2.10.
n∑

k=0

[
n
k

]
q

2n−k (CTk,q(x, y)− STk,q(x, y))

=
(1 + q2)Cn,q(x, y) + STn,q(x, y)

1 + q
− (1 + q)2Sn,q(x, y) + CTn,q(x, y)

1 + q
.

Theorem 2.11. For 0 < q < 1 and real numbers x and y, we obtain

(i)
∂

∂x
CTn,q(x, y) = [n]qCTn−1,q(x, y),

∂

∂y
CTn,q(x, y) = −[n]qSTn−1,q(x, qy).

(ii)
∂

∂x
STn,q(x, y) = [n]qSTn−1,q(x, y),

∂

∂y
STn,q(x, y) = [n]qCTn−1,q(x, qy).

Proof. (i) Let x be any real number. Then we find the q-partial derivative of
q-cosine tangent polynomials. By using the q-derivative of the q-cosine function,
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we have
∞∑

n=0

∂

∂x
CTn,q(x, y)

tn

[n]q!
=

∞∑
n=0

CTn,q(x, y)
tn+1

[n]q!

=

∞∑
n=0

[n]qCTn−1,q(x, y)
tn

[n]q!
.

(2.8)

From (2.8), we obtain the left result of (i). In a similar way as in the proof of
the left result of (i), we find

∞∑
n=0

∂

∂y
CTn,q(x, y)

tn

[n]q!
= −

∞∑
n=0

STn,q(x, qy)
tn+1

[n]q!

= −
∞∑

n=0

[n]qSTn−1,q(x, qy)
tn

[n]q!
.

(2.9)

Hence we have the right result of (i) from (2.9).
(ii) For any real number x, we find the q-partial derivative for q-sine tangent

polynomials by using the q-derivative of the q-sine function as
∞∑

n=0

∂

∂x
STn,q(x, y)

tn

[n]q!
=

∞∑
n=0

STn,q(x, y)
tn+1

[n]q!

=

∞∑
n=0

[n]qSTn−1,q(x, y)
tn

[n]q!
.

(2.10)

In addition, for any real number y, we investigate the q-partial derivative for
q-sine tangent polynomials by using the q-derivative of the q-sine function as

∞∑
n=0

∂

∂y
STn,q(x, y)

tn

[n]q!
=

∞∑
n=0

CTn,q(x, qy)
tn+1

[n]q!

=

∞∑
n=0

[n]qCTn−1,q(x, qy)
tn

[n]q!
.

(2.11)

From (2.10) and (2.11), we obtain the required results. �
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