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A NOTE ON GENERALIZED SKEW DERIVATIONS ON
MULTILINEAR POLYNOMIALS
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Abstract. Let R be a prime ring, Qr be the right Martindale quotient
ring and C be the extended centroid of R. If G be a nonzero generalized
skew derivation of R and f(x1, x2, · · · , xn) be a multilinear polynomial
over C such that

(
G(f(x1, x2, · · · , xn)) − f(x1, x2, · · · , xn)

)
∈ C for all

x1, x2, · · · , xn ∈ R, then either f(x1, x2, · · · , xn) is central valued on R or
R satisfies the standard identity s4(x1, x2, x3, x4).
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1. Introduction

Let R be a prime ring with center Z(R). Recall that a ring R is prime if for
any a, b ∈ R, aRb = (0) implies a = 0 or b = 0. The standard identity s4 in four
variables is defined as follows:

s4 =
∑

(−1)σXσ(1)Xσ(2)Xσ(3)Xσ(4)

where (−1)σ is the sign of a permutation σ of the symmetric group of degree 4.
Let Qr be the right Martindale quotient ring of R, Q be the two-sided Martindale
quotient ring of R and C = Z(Q) = Z(Qr) be the center of Q and Qr; where C
is called the extended centroid of R and this is a field when R is a prime ring.
It should be remarked that Q is a centrally closed prime C-algebra. For the
definitions and related properties of these objects, we refer to [3].

It is well known that automorphisms, derivations and skew derivations of R
can be extended for Q and Qr. Chang [7] extended the definition of generalized
skew derivation to the right Martindale quotient ring Qr of R as follows: the
additive mapping G : Qr → Qr is generalized skew derivation if G(xy) = G(x)y+
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α(x)d(y) for all x, y ∈ Q, where d is an associated skew derivation of G and α
is an associated automorphism of G. Moreover, there exists G(1) = a ∈ Qr such
that G(x) = ax + d(x) for all x ∈ R. Furthermore, if G(1) ∈ Q, then G can
be extended to Q. For fixed elements a and b of R, the mapping G : R → R
define as G(x) = ax− σ(x)b for all x ∈ R is a generalized skew derivation of R.
A generalized skew derivation of this form is called an inner generalized skew
derivation. We will adopt the following notation

f(x1, x2, · · · , xn) = x1 · · ·xn +
∑

σ∈Sn,σ ̸=id

ασxσ(1) · · ·xσ(n)

for some ασ ∈ C. The polynomial f(x1, x2, · · · , xn) ∈ C⟨x1, · · · , xn⟩ is said to
be central valued on R if f(x1, · · · , xn) ∈ Z(R) for all x1, x2, · · · , xn ∈ R. The
polynomial f(x1, x2, · · · , xn) ∈ C⟨x1, · · · , xn⟩ is called non central if it is not
central valued on R (or equivalently on the central closure CR of R).

In [5], Bergen proved that if σ is an automorphism of R such that (σ(x) −
x)m = 0 for all x ∈ R, where m is a fixed positive integer, then σ = 1. Later,
Bell and Daif [4] proved some results which have the same flavour when the
automorphism was replaced by a nonzero derivation d. They showed that if R
is a semiprime ring with a nonzero ideal I such that d([x, y]) − [x, y] = 0 for
all x, y ∈ I, then I is central. Moreover, Hongan [14] proved that if R is a
2-torsion free semiprime ring and I is a nonzero ideal of R, then I is central
if and only if d([x, y]) − [x, y] ∈ Z(R) for all x, y ∈ I. The similar identities
have been investigated by many researchers from various point of view, e.g.,
see [1][20][22] and reference therein. It is natural to investigate the situation
when f(x1, x2, · · · , xn) is a multilinear polynomial and

(
d(f(x1, x2, · · · , xn)) −

f(x1, x2, · · · , xn)) ∈ Z(R) is a differential identity for some ideal I of R. In
the present paper, our aim is to analyse what will happen in the case, when
(G(f(x1, x2, · · · , xn))− f(x1, x2, · · · , xn)) ∈ C, for all x1, x2, · · · , xn ∈ R, where
G is a generalized skew derivation associated with automorphisms α of R. More
precisely, our motive is to prove the following result.
Theorem 1.1. Let R be a prime ring with extended centroid C. If f(x1, x2, · · · ,
xn) is a multilinear polynomial over C and G is a nonzero generalized skew
derivation of R such that

(
G(f(x1, x2, · · · , xn))− f(x1, x2, · · · , xn)

)
∈ C, for all

x1, x2, · · · , xn ∈ R, then either f(x1, x2, · · · , xn) is central valued on R or R
satisfies the standard identity s4(x1, x2, x3, x4).

To prove our main theorem, we need to recall some more terminology and
known results. Let R = Ms(F ) be the algebra of s × s matrices over a field F .
Notice that the set f(R) = {f(x1, x2, · · · , xn) : x1, x2, · · · , xn ∈ R} is invariant
under the action of all inner automorphism of R. If x = (x1, x2, · · · , xn) ∈
R × R × · · · × R = Rn, then for any inner automorphism χ of Ms(F ), we have
x = (χ(x1), · · · , χ(xn)) ∈ Rn and χ(f(x)) = f(x) ∈ f(R). We denote by eij ,
the unit matrix having 1 in the (i, j)th-entry and zero elsewhere. Let us recall
some results from [17] and [18]. Suppose that S is a ring with 1 and eij ∈Ms(S)
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is the unit matrix. For a sequence v = (H1, · · · ,Hn) in Ms(S), the value of v
is defined by the product |v| = H1 · · ·Hn and v is non-vanishing if |v| ̸= 0. For
a permutation σ for {1, 2, · · · , n}, we write vσ = (Hσ(1), · · · ,Hσ(n)). We call v
is simple if it is of the from v = (h1ei1j1, · · ·hneinjn) where hi ∈ S. A simple
sequence v is called even if for some σ, |vσ| = peii ̸= 0 and odd if for some σ,
|vσ| = peij ̸= 0 where i ̸= j.

Fact 1.1. ([17, Lemma]) Let S be a F -algebra with 1 and R = Ms(S), s ≥ 2.
If f(x1, x2, · · · , xn) is a multilinear polynomial over F such that f(v) = 0, for
all odd simple sequences v, then f(x1, x2, · · · , xn) is central valued on R.

Fact 1.2. ([18, Lemma 2]) Let S be a F -algebra with 1 and R = Ms(S),
s ≥ 2. Suppose that f(x1, x2, · · · , xn) is a multilinear polynomial over F and
v = (H1, · · · ,Hn) is a simple sequence of R. Then, (i) if v is even, then f(v) is
a diagonal matrix. (ii) if v is odd, then f(v) = helt for some h ∈ S and l ̸= t.

Remark 1.1. Since f(x1, x2, · · · , xn) is not central valued on R, by Fact 1.1,
there exists an odd simple sequence r = (x1, x2, · · · , xn) of R such that f(x) =
f(x1, x2, · · · , xn) ̸= 0. By Fact 1.2, we see that f(x) = ηelt, where 0 ̸= η ∈ F
and l ̸= t. As f(x1, x2, · · · , xn) is a multilinear polynomial and F is a field, we
may assume that η = 1. Now, for distinct i, j, let σ ∈ Sn be such that σ(l) = i
and σ(t) = j, and let χ be the automorphism of R defined by

χ(
∑
m,q

ζmqemq) =
∑
m,q

ζmqeσ(m)σ(t),

then f(χ(x)) = f(χ(x1), · · · , χ(xn)) = χ(f(x)) = ηeij .

Fact 1.3. ([13, Lemma 1]) Let F be an infinite field and s ≥ 2. If H1, . . . , Hk are
not scalar matrices inMs(F ), then there exists an invertible matrix B ∈Mm(C)
such that any matrices BH1B

−1, . . . , BHkB
−1 have all nonzero entries.

Fact 1.4. ([12, Theorem 1]) Let R be a prime ring with an automorphism α and
an X-outer α-derivation d. Then any generalized polynomial identity of R in the
form Ψ(xi, d(xi)) = 0 yields the generalized polynomial identity Ψ(xi, yi) = 0 of
R for any distinct indeterminates xi, yi.

Fact 1.5. ([12, Theorem 1]) Let R be a prime ring with an automorphism α
and an X-outer α-derivation d. Then any generalized polynomial identity of
R in the form Ψ(xi, α(xi), d(xi)) = 0 yields the generalized polynomial identity
Ψ(xi, yi, zi) = 0 of R for any distinct indeterminates xi, yi.

2. Proof of Theorem 1.1

We begin with two propositions which will be used for the proof of our main
result.

Proposition 2.1. Let R be a prime ring with extended centroid C and f(x1, x2,
· · · , xn) be a multilinear polynomial over C. If

(
bf(x1, x2, · · · , xn)−f(x1, x2, · · · ,
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xn)c − f(x1, x2, · · · , xn)
)

∈ C, for any a, b, x1, x2, · · · , xn ∈ R, then either
f(x1, x2, · · · , xn) is central valued on R or b, c ∈ C and R satisfies the stan-
dard identity s4.

Proof. Suppose neither f(x1, x2, · · · , xn) is not central valued on R nor b, c /∈ C.
In both the cases,

(
bf(x1, x2, · · · , xn)−f(x1, x2, · · · , xn)c−f(x1, x2, · · · , xn)

)
∈

C is a non trivial generalized polynomial identity for R. By [9, Theorem 2],
[
(
bf(x1, x2, · · · , xn) − f(x1, x2, · · · , xn)c − f(x1, x2, · · · , xn)

)
, y] = 0 is also an

identity for RC. By Martindale’s theorem [19], RC is a primitive ring with
nonzero socle. Thus, there exists a vector space V over a division ring D such
that RC is a dense of D-linear transformations over V .

If dimDV = ∞, then by [24, Lemma 2], RC satisfies the following generalized
identity [(bx − xc − x), y] = 0. Suppose there exists v ∈ V such that {v, vb}
is linearly D-independent. By density of RC, there exists w ∈ V such that
{v, vb, w} is linearlyD-independent and x0, y0 ∈ RC such that vx0 = 0, v(bx0) =
w, vy0 = 0, wy0 = v. This leads to the contradiction 0 = v[(bx0−x0c−x0), y0] =
v ̸= 0. Thus {v, vb} is linearly D-dependent for all v ∈ V , which implies that b ∈
C. From this, RC satisfies [−xc−x, y] = 0. As above, suppose that there exists
v ∈ V such that {v, vc} is linearlyD-independent. Then, there exists w ∈ V such
that {v, vc, w} is linearly D-independent and there exist x0, y0 ∈ RC such that
vx0 = v, vy0 = 0, v(cy0) = −v This implies that 0 = v[−x0c− x0, y0] = v ̸= 0, a
contradiction. Also, in this case we conclude that {v, vc} is linearly D-dependent
for all v ∈ V , and so c ∈ C.

Now, consider that dimDV is finite dimensional. In this case, RC is a sim-
ple ring which satisfies a non trivial generalized polynomial identity. By [23,
Theorem 2.3.29] RC ⊆ Ms(F ), for a suitable field F . Moreover, Ms(F ) satisfy
the same generalized polynomial identity as RC. Hence

(
bf(x1, x2, · · · , xn) −

f(x1, x2, · · · , xn)c−f(x1, x2, · · · , xn)
)
∈ Z(Ms(F )) for all x1, x2, · · · , xn ∈Ms(F ).

Let s ≥ 2, otherwise we have noting to prove. Suppose that R does not satisfy
s4. Since f(x1, x2, · · · , xn) is not central, by [18], there exist u1, . . . , un ∈Ms(F )
and γ ∈ F − {0} such that f(u1, . . . , un) = γekl, with k ̸= l. Moreover, as the
set {f(x1, . . . , xn) : x1, . . . , xn ∈ Ms(F )} is invariant under the action of all
F -automorphisms of Ms(F ), then for any i ̸= j there exist x1, . . . , xn ∈ Ms(F )
such that f(x1, . . . , xn) = eij . Moreover, (beij − eijc− eij) has rank at most 2,
that is (beij − eijc− eij) = 0. Right multiplying by eij , we obtain 0 = (eijc)eij .
It follows that the (j, i)-entry of the matrix c is zero, for all i ̸= j and this means
that c is diagonal, that is c =

∑
t ptctt with pt ∈ F . If χ is a F -automorphism

of Ms(F ), then the same conclusion holds for χ(c) as
(
χ(b)f(x1, x2, · · · , xn) −

f(x1, x2, · · · , xn)χ(c)−f(x1, x2, · · · , xn)
)
∈ Z(Ms(F )). Now suppose that i ̸= j

and χ(x) = (1 + eij)x(1− eij). Since χ(c) = (1 + eij)c(1− eij), then c must be
diagonal with cii = cjj and hence c is central element. Similarly we can show
that b is central in Ms(F ). Therefore, in any case we get the conclusion that
both a and b are central elements of R. This completes the proof. �
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Proposition 2.2. Let R be a prime ring and f(x1, x2, · · · , xn) be a multi-
linear polynomial over C. If G is the generalized inner skew derivation as-
sociated with automorphism α of R such that

(
G(f(x)) − f(x)

)
∈ C for all

x = (x1, x2, · · · , xn) ∈ R, then either R satisfies s4 or f(x) is central valued on
R.

Proof. Since G is an inner generalized skew derivation induced by elements b, c ∈
R and α ∈ Aut(R), i.e., G(x) = bx − α(x)c for all x ∈ R, we see that R
satisfies

(
bf(x1, x2, · · · , xn) − α(x1, x2, · · · , xn)c − f(x1, x2, · · · , xn)

)
∈ Z(R).

Firstly, we suppose that α is an X-inner automorphism of R,i.e., there exists an
element q ∈ Q such that α(x) = qxq−1 for all x ∈ R. Moreover, it is easy to
see that the generalized polynomial Ψ(x1, x2, · · · , xn) =

(
bf(x1, x2, · · · , xn) −

qf(x1, x2, · · · , xn)q−1c− f(x1, x2, · · · , xn)
)
is a generalized polynomial identity

for R.
If {1, q−1c} is C-linearly independent, then ϕ(x1, x2, · · · , xn) is a non-trivial

generalized polynomial identity for R. It follows from [9] that, ϕ(x1, x2, · · · , xn)
is a non-trivial generalized polynomial identity for Q. By the well-known Mar-
tindale’s theorem [19], we say that Q is a primitive ring having nonzero socle
with the field C which is associated division ring R of Q. By Jacobson’s theorem
[15, p. 75], Q is isomorphic to a dense subring of the ring of linear transforma-
tions of a vector space V over C, containing some nonzero linear transforma-
tions of finite rank. Assume that dimCV = ∞. By Lemma 2 of [24], the set
f(R) = {f(r1, r2, · · · , rn)|ri ∈ R} is dense in R. Since ψ(x1, x2, · · · , xn) = 0
is a generalized polynomial identity of R, then Q satisfies the generalized poly-
nomial identity [br − qrq−1c − r, s]. In particular for r = 1, [b − c − 1, s] is
an identity for Q, i.e., b − c − 1 ∈ C, say b = 1 + c + τ for some τ ∈ C.
Thus Q satisfies [(c + τ)r − qrq−1, s]. Once again for s = r, it follows that
Q satisfies [cr − qrq−1c, r]. Since R cannot satisfy any polynomial identity
(dimCV = ∞) and by [8, Lemma 3.2], we have q−1c ∈ C, which leads to the
contradiction. On the other hand, if dimCV = k ≥ 2 is a finite positive integer,
then Q ∼=Mk(C). We may assume that q−1c is not a scalar matrix. Otherwise in
view of Proposition 2.1, we have done. By Fact 1.4, there exists some invertible
matrix B ∈ Mk(C) such that each matrix B(q−1c)B−1, BqB−1 has all entries
nonzero. Denote by ϕ(x) = BxB−1, the inner automorphism induced by B.
Here ehl denotes the usual unit matrix with 1 in (h, l)-entry and zero elsewhere.
Since the set {f(r1, r2, · · · , rn) : r1, r2, · · · , rn ∈ Ms(C)} is invariant under
the action of all inner automorphisms of R, we have ϕ(b)r − ϕ(q)rϕ(q−1c) − r
for all r ∈ f(R). Let us write ϕ(q) =

∑
hl qhlehl and ϕ(q−1c) =

∑
hl phlehl

for 0 ̸= qhl, phl ∈ C. Since eij ∈ f(R) for all i ̸= j, for any i ̸= j we
have [ϕ(b)eij − ϕ(q)eijϕ(q

−1c) − eij , eij ] = 0.Therefore, we can easily see that
qjipji = 0, which is a contradiction.

In case, if {1, q−1c} is C-linearly dependent, i.e., q−1c ∈ C, then we have done
by Proposition 2.1. So we may assume that α is X-outer. Since R and Q sat-
isfy the same generalized polynomial identities with automorphisms [10], then
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ϕ(x1, x2, · · · , xn) = [bf(x1, x2, · · · , xn)− α(f(x1, x2, · · · , xn))c− f(x1, x2, · · · ,
xn), s] is also satisfied by Q. Moreover Q is centrally closed prime C-algebra. In
view of Proposition 2.1, we may assume that c ̸= 0. In this case, by [11, Main
Theorem], ψ(x1, x2, · · · , xn) is a non trivial generalized identity for R and Q. By
[16, Theorem 1], we deduce that RC has nonzero socle and Q is primitive. Since
α is an outer automorphism, then any (xi)

α-word degree in ψ(x1, x2, · · · , xn)
is equal to 1, by [11, Theorem 3], Q satisfies the identity [bf(x1, x2, · · · , xn) −
fα(y1, y2, · · · , yn)c−f(x1, x2, · · · , xn), s] where fα(x1, x2, · · · , xn) is the polyno-
mial obtained from f(x1, x2, · · · , xn) by replacing each coefficients µ with α(µ).
In particular, Q (and so also R) satisfies the generalized polynomial identity
[bf(x1, x2, · · · , xn)−f(x1, x2, · · · , xn)c−f(x1, x2, · · · , xn), s]. In view of Propo-
sition 2.1, we obtain the required conclusions. �

Proof of Theorem 1.1 For any skew derivation d of R, we have generalized skew
derivation G of the form G(x) = bx+ d(x) for all x ∈ R and b ∈ Qr. Let us put
f(x1, x2, · · · , xn) =

∑
σ∈Sn

µσxσ(1) · · ·xσ(n), where µσ ∈ C. By [12, Theorem],
we know that R and Qr satisfy the same generalized polynomial identities with
a single skew derivation. Thus Qr satisfies Ψ(x1, x2, · · · , xn, d(x1), · · · , d(xn)) =
bf(x1, x2, · · · , xn) + d(f(x1, x2, · · · , xn))− f(x1, x2, · · · , xn) ∈ C. Since G is X-
inner, then d is X-inner, i.e., there exist c ∈ Qr and α ∈ Aut(Qr) such that
d(x) = cx−α(x)c for all x ∈ R. Hence G(x) = (b+ c)x−α(x)c and we conclude
by Proposition 2.2.

Now, we assume that d is X-outer and α ∈ Aut(Qr) is associated auto-
morphism of d. Further we assume that f(x1, x2, · · · , xn) is not central val-
ued on R. We denote by fd(x1, x2, · · · , xn) as the polynomial obtained from
f(x1, x2, · · · , xn) by replacing each coefficient µσ with d(µσ). It should be re-
marked that

d(µσxσ(1) · · ·xσ(n)) =d(µσ)xσ(1) · · ·xσ(n)

+ α(µσ)

n−1∑
j=0

α(xσ(1) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n).

So, we have

G(f(x1, x2, · · · , xn))− f(x1, x2, · · · , xn)

=af(x1, x2, · · · , xn) + fd(x1, x2, · · · , xn)

+
∑
σ∈Sn

α(µσ)

×
n−1∑
j=0

α(xσ(1) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n) − f(x1, x2, · · · , xn) ∈ C.
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Since Qr satisfies Ψ(x1, x2, · · · , xn, d(x1), · · · , d(xn)), by Chuang [10, Theorem
1] it follows that R satisfies Ψ(x1, x2, · · · , xn, y1, · · · , yn), i.e.,

af(x1,x2, · · · , xn) + fd(x1, x2, · · · , xn)

+
∑
σ∈Sn

α(µσ)

×
n−1∑
j=0

α(xσ(1) · · ·xσ(j))yσ(j+1)xσ(j+2) · · ·xσ(n) − f(x1, x2, · · · , xn) ∈ C.

Now, suppose α is X-inner, say α(x) = qxq−1 for all x ∈ R and for some
invertible q ∈ Q. Then by the hypothesis and by Fact 1.4, we have

af(x1,x2, · · · , xn) + fd(x1, x2, · · · , xn)

+
∑
σ∈Sn

qµσq
−1

×
n−1∑
j=0

qxσ(1) · · ·xσ(j)q−1yσ(j+1)xσ(j+2) · · ·xσ(n) − f(x1, x2, · · · , xn) ∈ C,

for all x1, x2, · · · , xn, y1, y2, · · · , yn ∈ R. In particular, by taking y1 = y2 = · · · =
yn = 0, we see that af(x1, x2, · · · , xn)+fd(x1, x2, · · · , xn)−f(x1, x2, · · · , xn) ∈
C for all x1, x2, · · · , xn ∈ R. Therefore

q
∑
σ∈Sn

n∑
j=1

xσ(1) · · ·xσ(j−1)q
−1yσ(j)xσ(j+1) · · ·xσ(n) ∈ C,

for all x1, x2, · · · , xn, y1, y2, · · · , yn ∈ R, and hence for all x1, x2, · · · , xn, y1, y2,
· · · , yn ∈ Q, as R and Q satisfy the same generalized polynomial identities. Re-
placing yσ(j) by q[z, xσ(i)] in the last identity, we obtain q[z, f(x1, x2, · · · , xn)] ∈
C, for all x1, x2, · · · , xn ∈ Q. First we see that, if q[z, f(x1, x2, · · · , xn)] = 0 for
all x1, x2, · · · , xn ∈ Q, then f(x1, x2, · · · , xn) is clearly central valued on R as
q ∈ Q is invertible. On the other hand, if q[z, f(p1, p2, · · · , pn)] ̸= 0 for some
p1, p2, · · · , pn ∈ Q, then by [6, Theorem 2], we conclude that R satisfies s4, the
standard identity in four variables.

Finally, we assume that α is X-outer. Then by the hypothesis and by Fact
1.5, we have

af(x1,x2, · · · , xn) + fd(x1, x2, · · · , xn)

+
∑
σ∈Sn

α(µσ)

×
n−1∑
j=0

zσ(1) · · · zσ(j)yσ(j+1)xσ(j+2) · · ·xσ(n) − f(x1, x2, · · · , xn) ∈ C,
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for all x1, x2, · · · , xn, y1, y2, · · · , yn, z1, z2, · · · , zn ∈ R. In particular, by taking
y1 = y2 = · · · = yn = 0, we see that af(x1, x2, · · · , xn) + fd(x1, x2, · · · , xn) −
f(x1, x2, · · · , xn) ∈ C for all x1, x2, · · · , xn ∈ R. Therefore∑

σ∈Sn

α(µσ)

n∑
j=1

zσ(1) · · · zσ(j−1)yσ(j)xσ(j+1) · · ·xσ(n) ∈ C,

for all x1, x2, · · · , xn, y1, y2, · · · , yn, z1, z2, · · · , zn ∈ R. Replacing zσ(j) by xσ(j)
and yσ(j) by [z, xσ(j)], we obtain

[z, fd(x1, x2, · · · , xn)] ∈ C,

for all x1, x2, · · · , xn, z ∈ R. Therefore fd(x1, x2, · · · , xn) is central valued on
R or by [2, Theorem 2] R satisfies s4. If the first possibility holds then clearly
f(x1, x2, · · · , xn) is central valued on R, a contradiction. Therefore R must
satisfy s4, the standard identity in four variables. This completes the proof.
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