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EFFECTS OF ANGULAR VELOCITY AND BOUNDARY
TEMPERATURE TO THERMO-ELASTIC CHARACTERISTICS

ON HOMOGENEOUS CIRCULAR DISKS SUBJECTING TO
CONTACT FORCES†

JAEGWI GO

Abstract. A homogeneous circular disk undergoing a contact force is con-
sidered to investigate the thermo-elastic characteristics, and the inquiry is
based on the variations of outer surface temperature and angular velocity.
The intensity of stresses grows with the increase of outer surface temper-
ature, and the circumferential strain reacts more sensitively to the change
of outer surface temperature than the radial strain. In general, higher an-
gular velocity produces; (i) larger expansion in the radial direction, (ii)
smaller displacement in the circumferential, (iii) diminished intensity in
the stresses. It is demonstrated that outer surface temperature and an-
gular velocity are critical factors in the determination of thermo-elastic
characteristics of homogeneous circular disks subjecting to a contact force.
The results obtained can be applied on the design of a homogeneous circu-
lar cutter to promote proper and reliable thermos-elastic characteristics in
service by the proper operation of these parameters.
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1. Introduction

Rotating circular disks subjecting to contact forces are always exposed to
the risk of friction, wear, heat generation, and temperature deformation, which
cause complex mutual interactions. The complicated interactions developed by
the variation of each parameter are crucial factors to be considered in the study
of the thermo-elastic movements. The investigation to the influences of angular
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velocity and outer boundary temperature in rotating circular disk under the
loading of contact forces still remains as a challenging work.

Since circular disk is a practically useful shape in various industrial applica-
tions, circular shaped model is a popular target model and the physical move-
ments have been investigated by many researchers. Obata and Noda [1] studied
the steady thermal stress in a hollow circular cylinder and sphere, and Liew et
al. [2] analyzed thermal stress behavior of functionally graded hollow circular
cylinders. By Kovalyshen [3], a circular disk cutter is characterized the move-
ments of an oscillatory in operating process reduces cutting forces, and the radial
component effects of the reaction force on the bending of thin circular plates are
described by Huang and Li [4] applying Kirchhoff plate theory. One of major
reason to the cutting ring breakage is the unbalance forces between two sides
of cutter ring during cutting process, which is proved by Ren et al. [5]. With
a forced condition of complicated stress fields for an edge-cracked circular disk
Wu and Tong determined stress intensity factors crack opening displacements
using Weight function method [6].

However, even though contact force is a crucial parameter in determination
of the thermo-elastic characteristics, most of researches for the circular disks
have been carried out without considering contact force during the cutting pro-
cess. Rad [7] investigated, based on poroelasticity theory, static behavior of the
auxetic-porous structures composed of multi directional heterogeneous materials
with considering friction force. Applying the yaw angle misalignment theory to
rotary contact systems for circular sliding contact Tadokoro et al. [8] testified
the followings: parallel misalignment between drive and driven shafts stabilize
the systems by dint of change in the direction of local frictional force.

In the present research, focused factors are the angular velocity and outer
temperature and the influences to thermo-elastic characteristics, according to
the variation of them, are analyzed on a rotating Al homogeneous circular disk
undergoing of a contact force. Hooke’s law is used to drive a pair of partial
differential equations under the consideration of contact forces. Due to the
complicated governing equations a finite volume method is applied to obtain the
solution of displacement, stress, and stain components as a function of angular
velocity and outer boundary temperature.

2. Mathematical Modelling

A rotating homogeneous circular disk is considered. The disk is of a concentric
circular hole and undergoes contact forces. The origin of the polar coordinate
system r − θ is assumed to be located at the center of the disk and hole, and
the radii of the hole and outer surface of the disk are designated by a and b (see
Fig. 1). The following nomenclatures are used in the derivation of governing
equations.
u: radial displacement component εr: radial strain
v: circumferential displacement component εθ: circumferential strain
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Figure 1. Schematic diagram of homogeneous circular disk models.

γ: shearing strain σr: radial stress
σθ: circumferential stress τ : shearing stress
ν: Poisson’s ratio ω: angular velocity
N : revolutions per minute (rpm) E: Young’s modulus
α: coefficient of thermal expansion ρ: density of the disk

2.1. Temperature distribution profiles
Due to the assumption that the circular disk undergoes the loading of symmet-
ric temperature to the radial direction only, the differential equation for the
temperature distribution in the polar coordinate can be expressed with
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The general solution of Eq.(1) is of the form

T (r) = c1 ln r + c2, (2)

where c1 and c2 are integral constants and will be obtained based on the bound-
ary conditions.

2.2. Mathematical formulation
Hooke’s law in plane stress problems yields the following strain-stress relations
for the circular disk undergoing thermal expansion, in polar coordinates,
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(a) (b)

Figure 2. (a) Discretization of circular disk domain, (b) No-
tations of finite control volumes.

The T (r) denotes the change in temperature at any distance . The strain com-
ponents are expressed with the deformation components as follows:
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Since equilibrium equations in polar coordinates are
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the combination of equations Eq.(3) - Eq.(5) provides the governing partial dif-
ferential equations system
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The thermo-elastic characteristics of a present circular disk subjecting to contact
forces are investigated based on the following boundary conditions

σr(a, θ) = 0 σr(b, θ − {0}) = 0 σr(b, 0) = P at contact point.
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2.3. Finite volume formulation
The governing partial differential equations system is too involved to obtain
analytic solution, and a finite volume method thus is adopted for the approxi-
mation. The domain is divided up into control volume and integrates the field
equations over each control volume to be applied for approximated solutions (see
Fig. 2). The (i, j) represents the finite surface mesh and the discretizations for
the governing equations are appeared on the basis of the following relations at
the adjacent locations;
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The subscript 1/2 implies the value of the displacement at the boundary of the
control surface (see Fig. 2(b)). Thus, the governing equations are discretized as
below
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Table 1. Mechanical and thermal properties for thermoelastic
characteristics of rotating FG circular disks.

Elastic Thermal Thermal Density
Material / Property module expansion conductivity (g/cm3)

(MPa) coefficient (10−6/oC) (W/M −o C)
Al 71 23.1 237 2.7
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3. Numerical results and discussions

The temperature distribution profiles are displayed using the differential equa-
tion induced in section 2.1 according to the inner and outer boundary conditions.
The Ta and Tb represent the temperature degree of inner and outer boundaries,
respectively. The finite volume formula developed in section 2.3 are employed to
obtain numerical approximations for the displacement, stress, and strain com-
ponents of an Al homogeneous circular disk. The mechanical and thermal prop-
erties of the ingredient material are shown in Table 1. For the study of the
influences of outer boundary variation the representative outer surface temper-
ature values Tb=150, Tb=300, Tb=450, Tb=600 are chosen. The temperature
distribution profiles are displayed in Fig. 3 for various outer boundary temper-
ature values when the inner surface temperature Ta=20 . Higher temperature
distribution appears with the increase of outer surface temperature, and logarith-
mic growths exhibit along the normalized radius r− a/b− a in the temperature
distribution profiles, as shown in equation (2).
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Figure 3. Temperature distribution along the radial direction.

The effects of outer surface temperature to thermo-elastic characteristics are
expressed through Fig. 4 to 6. The influences to the displacement distributions
are explained in Fig. 4. As shown in Fig. 4(a), the radial displacement of
the circular disk at the contact point θ=0 extends the concentric hole direction
until around r − a/b− a=0.9 and sudden shift to the outer boundary direction
engenders after r − a/b − a=0.9. As the growth of outer surface temperature
larger expansion appears in the radial displacement magnitude and the largest
displacement occurs at the contact point of Tb=600. At θ=180, larger expansion
is produced to the concentric hole direction and the largest radial displacement
is detected around r − a/b − a=0.3 of Tb=600 in magnitude (see Fig. 4(b)).
The circumferential displacement are presented at the normalized radius values
r−a/b−a = 0.1 and 0.9. Near domain of the disk inner surface is susceptible to
the change of outer boundary temperature and negative circumferential displace-
ment exhibits (see Fig. 4(c)). The circumferential displacement increases along
the growth of outer surface temperature the largest expansion occurs around
θ=0.5 radian of Tb=600. Near outer boundary of the circular disk the circum-
ferential displacement fluctuates to both positive and negative directions (see
Fig. 4(d)). But, the outer surface temperature variation effects to circumfer-
ential displacement is not serious and the influences of temperature variation
appears after θ=1 radian.

The influences of outer surface temperature variation to stress distributions
are displayed in Fig. 5. At θ=0, the radial stress is not susceptible to the change
of outer surface temperature over entire domain except both disk boundaries
(see Fig. 5(a)). The magnitude of the radial stress increases with the growth of
outer surface temperature. But, at θ=180, the effect of outer surface tempera-
ture variation is notable. With the increase of outer surface temperature, inner
boundary undergoes higher compressive radial stress and larger tensile radial
stress develops at outer boundary (see Fig. 5(b)). As shown in Fig. 5(c), the
disk experiences the compressive circumferential stress at the normalized radius
r− a/b− a = 0.1 over all area. The intensity of the compressive circumferential
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(a) (b)

(c) (d)

Figure 4. Effects of outer boundary temperature on the dis-
placement component: (a) radial at θ=0, (b) radial at θ=180,
(c) circumferential at r − a/b − a = 0.1, (d) circumferential at
r − a/b− a = 0.9.

(a) (b)

(c) (d)

Figure 5. Effects of outer boundary temperature on the stress
component: (a) radial at θ=0, (b) radial at θ=180, (c) circum-
ferential at r− a/b− a = 0.1, (d) circumferential at r− a/b− a
= 0.9.
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stress grows as outer surface temperature increases and the largest circumfer-
ential stress occurs around θ=2 radian of Tb=600. At r − a/b − a = 0.9, the
effect of outer surface temperature change is minor and only near area of the
contact point shows little impact (see Fig. 5(d)). Fig. 6 presents the influences
of outer surface temperature variation to the strain distributions. As shown in
Fig. 6(a), outer surface temperature variation is not a critical factor at the con-
tact point and trivial impact appears on the radial strain distributions. But, at
θ=180, the circumferential strain distribution over near area of the inner bound-
ary is sensitive to the change of outer boundary temperature. The magnitude of
the radial strain is getting larger with the growth of outer surface temperature
(see Fig. 6(b)). The circumferential strain reacts sensitively to the change of
outer boundary temperature at r − a/b − a = 0.1. The circumferential strain
increases as outer boundary temperature increases, and the largest circumfer-
ential strain occurs around θ=2 radian of Tb=600 (see Fig. 6(c)). Near area
of the outer boundary exhibits a different behavior in the circumferential strain
distributions. Positive values are converted into negative in the circumferential
strain as the outer surface temperature increases, and the circumferential strain
fluctuates over near area around θ=0.

The effects of angular velocity to thermo-elastic characteristics are presented
through Fig. 7 to 9. The representative values of revolutions per minute N=150,
N=300, N=600, and N=1000 are chosen for the influences of angular velocity.
The displacement distributions in response to the change of angular velocity
are presented in Fig. 7. At θ=0, the effect of angular velocity to the radial
displacement is minor and a little larger difference is produced over area of 0.2 <
r− a/b− a < 0.9 in the radial displacement with the growth of angular velocity
(see Fig. 7(a)). But, the variation of angular velocity produces notable influences
at θ=180 (see Fig. 7(b)). With the increase of angular velocity larger radial
displacement develops to outer boundary direction, and the area around r−a/b−
a = 0.8 is the most sensitive part to the change of angular velocity. As shown
in Fig. 7(c), the circumferential displacement is susceptible to angular velocity
variation over near area of inner surface. The intensity of the circumferential
displacement decreases as angular velocity increases and the largest magnitude
occurs ofN=150. Similar behavior appears in the intensity of the circumferential
displacement over near area of outer surface (see Fig. 7(d)). But, the variation
of angular velocity causes minor effects in the circumferential displacement.

Fig. 8 displays the effects of angular velocity to the stresses. The variation
of angular velocity produces trivial influence to the radial stress at the contact
point (see Fig. 8(a)). But, at θ=180, the intensity of angular velocity is in-
dispensable and the increase of angular velocity generates smaller compressive
radial stresses until around r − a/b− a = 0.8 (see Fig. 8(b)). At r − a/b− a =
0.1, the change of angular velocity yields considerable impact to the circumfer-
ential stress (see Fig. 8(c)). The magnitude of the compressive circumferential
stress decreases with the growth of angular velocity. But, as shown in Fig. 8(d),
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(a) (b)

(c) (d)

Figure 6. Effects of outer boundary temperature on the strain
component: (a) radial at θ=0, (b) radial at θ=180, (c) circum-
ferential at r− a/b− a = 0.1, (d) circumferential at r− a/b− a
= 0.9.

(a) (b)

(c) (d)

Figure 7. Effects of angular velocity on the displacement com-
ponent: (a) radial at θ=0, (b) radial at θ=180, (c) circumferen-
tial at r − a/b − a = 0.1, (d) circumferential at r − a/b − a =
0.9.
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(a) (b)

(c) (d)

Figure 8. Effects of angular velocity on the stress component:
(a) radial at θ=0, (b) radial at θ=180, (c) circumferential at
r − a/b− a = 0.1, (d) circumferential at r − a/b− a = 0.9.

(a) (b)

(c) (d)

Figure 9. Effects of angular velocity on the strain component:
(a) radial at θ=0, (b) radial at θ=180, (c) circumferential at
r − a/b− a = 0.1, (d) circumferential at r − a/b− a = 0.9.
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different phase develops at r− a/b− a = 0.9. The intensity of tensile circumfer-
ential stress decreases until θ=2 radian, whereas opposite phenomenon appears
after θ=2 radian, with the growth of angular velocity. Fig. 9 exhibits the in-
fluences of angular velocity to the strains. The variation of angular velocity is
not critical parameter in the radial strain distributions and the effects are trivial
(see Figs. 9(a) and 9(b)). But, angular velocity is indispensable parameter to
the circumferential strain. As shown in Figs. 9(c) and 9(d), the intensity of
the circumferential strain reduces over near area of inner boundary, while the
magnitude of the circumferential strain grows, as the value of angular velocity
grows.

4. Conclusions

The thermo-elastic characteristics on homogeneous circular disk subjecting to
a contact force have been investigated due to the variation of outer surface tem-
perature and angular velocity. The impacts of compressive and tensile stresses
grow in the radial and circumferential stresses as outer surface temperature in-
creases. The circumferential strain is more susceptible to the change of outer
surface temperature than the radial strain, and the strain distribution develops
to the negative direction with the growth of outer surface temperature. Higher
angular velocity produces larger expansion in the radial direction, whereas the
circumferential displacement decreases with the increase of angular velocity. In
general, the magnitudes of both the radial and circumferential stresses diminish
when higher angular velocity is provided on the circular disk. The influence
of angular velocity to the radial strain is minor, while sensitive reactions occur
in the circumferential strain according to the change of angular velocity. It is
demonstrated that outer surface temperature and angular velocity are important
factors in the determination of thermo-elastic characteristics of homogeneous cir-
cular disks subjecting to a contact force, and the thermo-elastic behavior can be
controlled by the proper operation of these parameters. Therefore, the results
obtained in this study can be applied on the design of a homogeneous circular
cutter or grinding disk undergoing a loading pressure to promote proper and
reliable thermos-elastic characteristics in service.

References
1. Y. Obata and N. Noda, Steady thermal stress in a hollow circular cylinder and a hollow

sphere of a functionally gradient materials, J. Therm. Stress 17 (1994), 471-487.
2. K.M. Liew, S. Kitipornchai, X.Z. Zhang, and C.W. Lim, Analysis of the thermal stress

behavior of functionally graded hollow circular cylinders, Int. J. Solids Struct. 40 (2003),
2355-2380.

3. Y. Kovalyshen, Analytical model of oscillatory disc cutting, Int. J. Rock Mechanics & Mining
Sciences 77 (2015), 378-383.



Homogeneous circular disks subjecting to contact forces 43

4. Y. Huang and X.-F. Li, Effect of radial reaction force on the bending of circular plates
resting on a ring support, Int. J. Mechanical Sciences 119 (2016), 197-207.

5. D.-J. Ren, J.S. Shen, J.-C. Chai, and A. Zhou, Analysis of disc cutter failure in shield
tunneling using 3D circular cutting theory, Engineering Failure Analysis 90 (2018), 23-35.

6. X.R. Wu and D.H. Tong, Evaluation of various analytical weight function methods base
on exact K-solutions of an edge-cracked circular disc, Engineering Fracture Mechanics 189
(2018), 64-80.

7. A.B. Rad, Static analysis of non-uniform 2D functionally graded auxetic-porous circular
plates interacting with the gradient elastic foundations involving friction force, Aerospace
Science and Technology 76 (2018), 315-339.

8. C. Tadokoro, T. Nagamine, and K. Nakano, Stabilizing effect arising from parallel mis-
alignment in circular sliding contact, Tribology International 120 (2018), 16-22.

Data Availability
All data included in this study are available from the corresponding author upon request.

Jaegwi Go received Ph.D. at Michigan State University. His research interests include
biomathmatics, composite and functionally graded materials, elastic maerials.
Department of Mathematics, Changwon National University, Changwon 51140, Korea.
e-mail: jggo@changwon.ac.kr




