DOI QR코드

DOI QR Code

WEIGHTED NORM ESTIMATES FOR THE DYADIC PARAPRODUCT WITH VMO FUNCTION

  • Chung, Daewon (Major in Mathematics Faculty of Basic Sciences Keimyung University)
  • Received : 2020.03.03
  • Accepted : 2020.08.21
  • Published : 2021.01.31

Abstract

In [1], Beznosova proved that the bound on the norm of the dyadic paraproduct with b ∈ BMO in the weighted Lebesgue space L2(w) depends linearly on the Ad2 characteristic of the weight w and extrapolated the result to the Lp(w) case. In this paper, we provide the weighted norm estimates of the dyadic paraproduct πb with b ∈ VMO and reduce the dependence of the Ad2 characteristic to 1/2 by using the property that for b ∈ VMO its mean oscillations are vanishing in certain cases. Using this result we also reduce the quadratic bound for the commutators of the Calderón-Zygmund operator [b, T] to 3/2.

Keywords

References

  1. O. V. Beznosova, Linear bound for the dyadic paraproduct on weighted Lebesgue space L2(w), J. Funct. Anal. 255 (2008), no. 4, 994-1007. https://doi.org/10.1016/j.jfa.2008.04.025
  2. S. M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc. 340 (1993), no. 1, 253-272. https://doi.org/10.2307/2154555
  3. D. Chung, Sharp estimates for the commutators of the Hilbert, Riesz transforms and the Beurling-Ahlfors operator on weighted Lebesgue spaces, Indiana Univ. Math. J. 60 (2011), no. 5, 1543-1588. https://doi.org/10.1512/iumj.2011.60.4453
  4. D. Chung, M. C. Pereyra, and C. Perez, Sharp bounds for general commutators on weighted Lebesgue spaces, Trans. Amer. Math. Soc. 364 (2012), no. 3, 1163-1177. https://doi.org/10.1090/S0002-9947-2011-05534-0
  5. R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. https://doi.org/10.4064/sm-51-3-241-250
  6. R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569-645. https://doi.org/10.1090/S0002-9904-1977-14325-5
  7. O. Dragicevic, L. Grafakos, M. C. Pereyra, and S. Petermichl, Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces, Publ. Mat. 49 (2005), no. 1, 73-91. https://doi.org/10.5565/PUBLMAT_49105_03
  8. R. Hunt, B. Muckenhoupt, and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251. https://doi.org/10.2307/1996205
  9. T. P. Hytonen, The sharp weighted bound for general Calderon-Zygmund operators, Ann. of Math. (2) 175 (2012), no. 3, 1473-1506. https://doi.org/10.4007/annals.2012.175.3.9
  10. J. Li, J. Pipher, and L. A. Ward, Dyadic structure theorems for multiparameter function spaces, Rev. Mat. Iberoam. 31 (2015), no. 3, 767-797. https://doi.org/10.4171/RMI/853
  11. J. C. P. Moraes, Weighted estimates for dyadic operators with complexity, ProQuest LLC, Ann Arbor, MI, 2011.
  12. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. https://doi.org/10.2307/1995882
  13. F. Nazarov, S. Treil, and A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc. 12 (1999), no. 4, 909-928. https://doi.org/10.1090/S0894-0347-99-00310-0
  14. F. Nazarov, A. Volberg, Bellman function, polynomial estimates of weighted dyadic shifts, and A2 conjecture, Preprint, 2011.
  15. M. C. Pereyra, Dyadic harmornic analysis and weighted inequalities: the sparse revolution, New Trends in Applied Harmonic Analysis (Vol 2), A. Aldroubi et al. (eds.) (Springer 2019), 159-239.
  16. S. Petermichl, The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical Ap characteristic, Amer. J. Math. 129 (2007), no. 5, 1355-1375. https://doi.org/10.1353/ajm.2007.0036
  17. D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405. https://doi.org/10.2307/1997184