References
- O. V. Beznosova, Linear bound for the dyadic paraproduct on weighted Lebesgue space L2(w), J. Funct. Anal. 255 (2008), no. 4, 994-1007. https://doi.org/10.1016/j.jfa.2008.04.025
- S. M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc. 340 (1993), no. 1, 253-272. https://doi.org/10.2307/2154555
- D. Chung, Sharp estimates for the commutators of the Hilbert, Riesz transforms and the Beurling-Ahlfors operator on weighted Lebesgue spaces, Indiana Univ. Math. J. 60 (2011), no. 5, 1543-1588. https://doi.org/10.1512/iumj.2011.60.4453
- D. Chung, M. C. Pereyra, and C. Perez, Sharp bounds for general commutators on weighted Lebesgue spaces, Trans. Amer. Math. Soc. 364 (2012), no. 3, 1163-1177. https://doi.org/10.1090/S0002-9947-2011-05534-0
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. https://doi.org/10.4064/sm-51-3-241-250
- R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569-645. https://doi.org/10.1090/S0002-9904-1977-14325-5
- O. Dragicevic, L. Grafakos, M. C. Pereyra, and S. Petermichl, Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces, Publ. Mat. 49 (2005), no. 1, 73-91. https://doi.org/10.5565/PUBLMAT_49105_03
- R. Hunt, B. Muckenhoupt, and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251. https://doi.org/10.2307/1996205
- T. P. Hytonen, The sharp weighted bound for general Calderon-Zygmund operators, Ann. of Math. (2) 175 (2012), no. 3, 1473-1506. https://doi.org/10.4007/annals.2012.175.3.9
- J. Li, J. Pipher, and L. A. Ward, Dyadic structure theorems for multiparameter function spaces, Rev. Mat. Iberoam. 31 (2015), no. 3, 767-797. https://doi.org/10.4171/RMI/853
- J. C. P. Moraes, Weighted estimates for dyadic operators with complexity, ProQuest LLC, Ann Arbor, MI, 2011.
- B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. https://doi.org/10.2307/1995882
- F. Nazarov, S. Treil, and A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc. 12 (1999), no. 4, 909-928. https://doi.org/10.1090/S0894-0347-99-00310-0
- F. Nazarov, A. Volberg, Bellman function, polynomial estimates of weighted dyadic shifts, and A2 conjecture, Preprint, 2011.
- M. C. Pereyra, Dyadic harmornic analysis and weighted inequalities: the sparse revolution, New Trends in Applied Harmonic Analysis (Vol 2), A. Aldroubi et al. (eds.) (Springer 2019), 159-239.
- S. Petermichl, The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical Ap characteristic, Amer. J. Math. 129 (2007), no. 5, 1355-1375. https://doi.org/10.1353/ajm.2007.0036
- D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405. https://doi.org/10.2307/1997184