참고문헌
- P. Baird and J. C. Wood, Harmonic morphisms between Riemannian manifolds, London Mathematical Society Monographs. New Series, 29, The Clarendon Press, Oxford University Press, Oxford, 2003. https://doi.org/10.1093/acprof:oso/9780198503620.001.0001
- J.-P. Bourguignon, A mathematician's visit to Kaluza-Klein theory, Rend. Sem. Mat. Univ. Politec. Torino 1989 (1989), Special Issue, 143-163 (1990).
- J.-P. Bourguignon and H. B. Lawson, Jr., Stability and isolation phenomena for YangMills fields, Comm. Math. Phys. 79 (1981), no. 2, 189-230. http://projecteuclid.org/euclid.cmp/1103908963 https://doi.org/10.1007/BF01942061
- B. Chen, Differential geometry of real submanifolds in a Kahler manifold, Monatsh. Math. 91 (1981), no. 4, 257-274. https://doi.org/10.1007/BF01294767
- B. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, Louvain, 1990.
- M. Falcitelli, S. Ianus, and A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific Publishing Co., Inc., River Edge, NJ, 2004. https://doi.org/10.1142/9789812562333
- C. F. Gauss, Disquisitiones generales circa superficies curvas, 1827, http://gdz.sub.unigoettingen.de/no cache/dms/load/img/?IDDOC=139389.
- A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715-737.
- S. Ianus, A. M. Ionescu, R. Mocanu, and G. E. Vilcu, Riemannian submersions from almost contact metric manifolds, Abh. Math. Semin. Univ. Hambg. 81 (2011), no. 1, 101-114. https://doi.org/10.1007/s12188-011-0049-0
- S. Ianus, R. Mazzocco, and G. E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta Appl. Math. 104 (2008), no. 1, 83-89. https://doi.org/10.1007/s10440-008-9241-3
- S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Classical Quantum Gravity 4 (1987), no. 5, 1317-1325. http://stacks.iop.org/0264-9381/4/1317 https://doi.org/10.1088/0264-9381/4/5/026
- S. Ianus and M. Visinescu, Space-time compactification and Riemannian submersions, in The mathematical heritage of C. F. Gauss, 358-371, World Sci. Publ., River Edge, NJ, 1991.
- S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York, 1969.
- M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (2000), no. 10, 6918-6929. https://doi.org/10.1063/1.1290381
- B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. http://projecteuclid.org/euclid.mmj/1028999604 https://doi.org/10.1307/mmj/1028999604
- K.-S. Park, h-slant submersions, Bull. Korean Math. Soc. 49 (2012), no. 2, 329-338. https://doi.org/10.4134/BKMS.2012.49.2.329
- K.-S. Park, h-semi-invariant submersions, Taiwanese J. Math. 16 (2012), no. 5, 1865-1878. https://doi.org/10.11650/twjm/1500406802
- K.-S. Park, h-semi-slant submersions from almost quaternionic Hermitian manifolds, Taiwanese J. Math. 18 (2014), no. 6, 1909-1926. https://doi.org/10.11650/tjm.18.2014.4079
- K.-S. Park and R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc. 50 (2013), no. 3, 951-962. https://doi.org/10.4134/BKMS.2013.50.3.951
- B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math. 8 (2010), no. 3, 437-447. https://doi.org/10.2478/s11533-010-0023-6
- B. Sahin, Invariant and anti-invariant Riemannian maps to Kahler manifolds, Int. J. Geom. Methods Mod. Phys. 7 (2010), no. 3, 337-355. https://doi.org/10.1142/S0219887810004324
- B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 54(102) (2011), no. 1, 93-105.
- B. Sahin, Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull. 56 (2013), no. 1, 173-183. https://doi.org/10.4153/CMB-2011-144-8
- B. Sahin, Riemannian submersions from almost Hermitian manifolds, Taiwanese J. Math. 17 (2013), no. 2, 629-659. https://doi.org/10.11650/tjm.17.2013.2191
- B. Watson, Almost Hermitian submersions, J. Differential Geometry 11 (1976), no. 1, 147-165. http://projecteuclid.org/euclid.jdg/1214433303 https://doi.org/10.4310/jdg/1214433303
- B. Watson, G, G'-Riemannian submersions and nonlinear gauge field equations of general relativity, in Global analysis-analysis on manifolds, 324-349, Teubner-Texte Math., 57, Teubner, Leipzig, 1983.