참고문헌
- R. Ahmad, I. Ahmad, I. Ali, S. Al-Homidan, and Y. H. Wang, H(·, ·)-orderedcompression mapping for solving XOR-variational inclusion problem, J. Nonlinear Convex Anal. 19 (2018), no. 12, 2189-2201.
- R. Ahmad, M. Akram, and M. Dilshad, Graph convergence for the H(·, ·)-co-accretive mapping with an application, Bull. Malays. Math. Sci. Soc. 38 (2015), no. 4, 1481-1506. https://doi.org/10.1007/s40840-014-0103-z
- R. Ahmad, J. Iqbal, S. Ahmed, and S. Husain, Solving a variational inclusion problem with its corresponding resolvent equation problem involving XOR-operation, Nonlinear Funct. Anal. Appl. 24 (2019), no. 3, 562-582.
- I. Ahmad, S. S. Irfan, M. Farid, and P. Shukla, Nonlinear ordered variational inclusion problem involving XOR operation with fuzzy mappings, J. Inequal. Appl. 2020. https: //doi.org/10.1186/s13660-020-2308-z
- M. Akram, J. W. Chen, and M. Dilshad, Generalized Yosida approximation operator with an application to a system of Yosida inclusions, J. Nonlinear Funct. Anal. (2018), 1-20.
- H. Amann, On the number of solutions of nonlinear equations in ordered Banach spaces, J. Functional Analysis 11 (1972), 346-384. https://doi.org/10.1016/0022-1236(72)90074-2
- C. Baiocchi and A. Capelo, Variational and quasivariational inequalities, translated from the Italian by Lakshmi Jayakar, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1984.
- H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973.
- S. S. Chang, Set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl. 248 (2000), no. 2, 438-454. https://doi.org/10.1006/jmaa.2000.6919
- S. S. Chang, J. K. Kim, and K. H. Kim, On the existence and iterative approximation problems of solutions for set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl. 268 (2002), no. 1, 89-108. https://doi.org/10.1006/jmaa.2001.7800
- S. S. Chang, C. F. Wen, and J. C. Yao, Zero point problem of accretive operators in Banach spaces, Bull. Malays. Math. Sci. Soc. 42 (2019), no. 1, 105-118. https://doi.org/10.1007/s40840-017-0470-3
- B. C. Dhage, A coupled hybrid fixed point theorem for sum of two mixed monotone coupled operators in a partially ordered Banach space with applications, Tamkang J. Math. 50 (2019), no. 1, 1-36. https://doi.org/10.5556/j.tkjm.50.2019.2502
- Y. H. Du, Fixed points of increasing operators in ordered Banach spaces and applications, Appl. Anal. 38 (1990), no. 1-2, 1-20. https://doi.org/10.1080/00036819008839957
- Y.-P. Fang and N.-J. Huang, H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput. 145 (2003), no. 2-3, 795-803. https://doi.org/10.1016/S0096-3003(03)00275-3
- Y.-P. Fang and N.-J. Huang, Approximate solutions for non-linear variational inclusions with (H, η)-monotone operator, Research Report, Sichuan University, 2003.
- Y.-P. Fang and N.-J. Huang, H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett. 17 (2004), no. 6, 647-653. https://doi.org/10.1016/S0893-9659(04)90099-7
- Y.-P. Fang, N.-J. Huang, and H. B. Thompson, A new system of variational inclusions with (H, η)-monotone operators in Hilbert spaces, Comput. Math. Appl. 49 (2005), no. 2-3, 365-374. https://doi.org/10.1016/j.camwa.2004.04.037
- D. J. Guo, Fixed points of mixed monotone operators with applications, Appl. Anal. 31 (1988), no. 3, 215-224. https://doi.org/10.1080/00036818808839825
- D. J. Guo and V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. 11 (1987), no. 5, 623-632. https://doi.org/10.1016/0362-546X(87)90077-0
- A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions, J. Math. Anal. Appl. 185 (1994), no. 3, 706-712. https://doi.org/10.1006/jmaa.1994.1277
- D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Pure and Applied Mathematics, 88, Academic Press, Inc., New York, 1980.
- H.-Y. Lan, Y. J. Cho, and R. U. Verma, Nonlinear relaxed cocoercive variational inclusions involving (A, η)-accretive mappings in Banach spaces, Comput. Math. Appl. 51 (2006), no. 9-10, 1529-1538. https://doi.org/10.1016/j.camwa.2005.11.036
- H. G. Li, Approximation solution for generalized nonlinear ordered variational inequality and ordered equation in ordered Banach space, Nonlinear Anal. Forum 13 (2008), no. 2, 205-214.
- H. G. Li, A nonlinear inclusion problem involving (α, λ)-NODM set-valued mappings in ordered Hilbert space, Appl. Math. Lett. 25 (2012), no. 10, 1384-1388. https://doi.org/10.1016/j.aml.2011.12.007
- H. G. Li, L. P. Li, and M. M. Jin, A class of nonlinear mixed ordered inclusion problems for ordered (αA, λ)-ANODM set-valued mappings with strong comparison mapping A, Fixed Point Theory Appl. 2014 (2014), 79, 9 pp. https://doi.org/10.1186/1687-1812-2014-79
- H. G. Li, L. P. Li, J. M. Zheng, and M. M. Jin, Sensitivity analysis for generalized set-valued parametric ordered variational inclusion with (α, λ)-NODSM mappings in ordered Banach spaces, Fixed Point Theory Appl. 2014 (2014), 122, 12 pp. https://doi.org/10.1186/1687-1812-2014-122
- H. G. Li, X. B. Pan, Z. Y. Deng, and C. Y. Wang, Solving GNOVI frameworks involving (γG, λ)-weak-GRD set-valued mappings in positive Hilbert spaces, Fixed Point Theory Appl. 2014 (2014), 146, 9 pp. https://doi.org/10.1186/1687-1812-2014-146
- H. G. Li, D. Qiu, and M. Jin, GNM ordered variational inequality system with ordered Lipschitz continuous mappings in an ordered Banach space, J. Inequal. Appl. 2013 (2013), 514, 11 pp. https://doi.org/10.1186/1029-242X-2013-514
- H. G. Li, D. Qiu, and Y. Zou, Characterizations of weak-ANODD set-valued mappings with applications to an approximate solution of GNMOQV inclusions involving ⊕ operator in ordered Banach spaces, Fixed Point Theory Appl. 2013 (2013), 241, 12 pp. https://doi.org/10.1186/1687-1812-2013-241
- H. G. Li, Y. Q. Yong, M. M. Jin, and Q. S. Zhang, Set-valued fixed point theorem based on the super-trajectory in complete super Hausdorff metric spaces, Nonlinear Funct. Anal. Appl. 21 (2016), no. 2, 195-213. https://doi.org/10.22771/NFAA.2016.21.02.02
- B. Martinet, Regularisation d'inequations variationnelles par approximations successives, Rev. Francaise Informat. Recherche Operationnelle 4 (1970), Ser. R-3, 154-158.
- A. Nagurney, Network economics: a variational inequality approach, Advances in Computational Economics, 1, Kluwer Academic Publishers Group, Dordrecht, 1993. https://doi.org/10.1007/978-94-011-2178-1
- M. A. Noor, K. I. Noor, and R. Kamal, General variational inclusions involving difference of operators, J. Inequal. Appl. 2014 (2014), 98, 16 pp. https://doi.org/10.1186/1029-242X-2014-98
- M. Patriksson, Nonlinear programming and variational inequality problems, Applied Optimization, 23, Kluwer Academic Publishers, Dordrecht, 1999. https://doi.org/10.1007/978-1-4757-2991-7
- A. H. Siddiqi and Q. H. Ansari, An algorithm for a class of quasivariational inequalities, J. Math. Anal. Appl. 145 (1990), no. 2, 413-418. https://doi.org/10.1016/0022-247X(90)90409-9
- G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964), 4413-4416.
- S. Wang, On fixed point and variational inclusion problems, Filomat 29 (2015), no. 6, 1409-1417. https://doi.org/10.2298/FIL1506409W
- D. L. Zhu and P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim. 6 (1996), no. 3, 714-726. https://doi.org/10.1137/S1052623494250415