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A NOTE ON SEMI-SLANT LIGHTLIKE SUBMANIFOLDS OF

AN INDEFINITE KENMOTSU MANIFOLD

Ramandeep Kaur, Gauree Shanker, Ankit Yadav, and Akram Ali∗

Abstract. In this paper, we study the geometry of semi-slant lightlike

submanifolds of an indefinite Kenmotsu manifold. The integrability con-

ditions of distributions D1 ⊕ {V }, D2 ⊕ {V } and RadTM on semi-slant
lightlike submanifolds of an indefinite Kenmotsu manifold are defined.

Furthermore, we derive necessary and sufficient conditions for the above

distributions to have totally geodesic foliations.

1. Introduction

In the theory of submanifolds of semi-Riemannian manifolds, it is interest-
ing to study the geometry of lightlike submanifolds since the intersection of
the normal vector bundle, and the tangent bundle is non-trivial. For example,
Duggal and Bejancu [1] first studied the geometry of lightlike submanifolds of
indefinite Kähler manifolds, and Duggal and Sahin [2] introduced a general
notion of lightlike submanifolds of indefinite Sasakian manifolds. In [14], Yano
introduced the notion of a f -structure on a differential manifold M , i.e., a ten-
sor field f of type (1, 1) and rank 2n satisfying f3 + f = 0 as a generalization
of both almost contact (for s = 1) and almost complex structures (for s = 0).
Nakagawa [10, 11] introduced the notion of globally framed f -manifolds, later
developed and studied by Goldberg [4], Goldberg, and Yano [5, 6]. In 1972,
Kenmotsu [9] studied a class of contact Riemannian manifolds satisfying some
special conditions, which are known as Kenmotsu manifolds. A Kenmotsu
manifold equipped with the non-degenerate indefinite metric is called Indefi-
nite Kenmotsu manifold. On the other hand, Shukla and Yadav [13] introduced
the geometry of semi-slant submanifolds of indefinite Sasakian manifolds. Re-
cently, Gupta and Sharfuddin [8, 7] studied the geometry of slant lightlike
submanifolds, invariant submanifolds, contact CR-lightlike submanifolds, and
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contact SCR-lightlike submanifolds of indefinite Kenmotsu manifolds. In [12],
Sachdeva et al. studied totally contact umbilical slant lightlike submanifolds of
indefinite Kenmotsu manifolds. It should be noted that the integrability and
totally geodesic foliation did not consider in previous literature. Therefore, in
the present paper, we will fill up this gape.

The paper is organized as follows: In section 2, it includes basic information
on the lightlike geometry as needed in this paper. In section 3, we introduce the
concept of semi-slant lightlike submanifolds. We obtain integrability conditions
of distributions D1 ⊕ {V }, D2 ⊕ {V } and RadTM . In section 4, we obtain
necessary and sufficient conditions for the distributions to have totally geodesic
foliation that involves the definition of semi-slant lightlike submanifolds

2. Preliminaries

An odd-dimensional semi-Riemannian manifold M is called an indefinite
almost contact metric manifold if there is an indefinite almost contact structure
(ϕ, V, η, g) consisting of a (1, 1)-tensor field ϕ, a structure vector field V , a 1-
form η and g is the semi-Riemannian metric on M satisfying

(1) ϕ2X = −X + η(X)V, η(V ) = 1, η ◦ ϕ = 0, ϕV = 0, η(V ) = 1,

(2) g(X,V ) = η(V ), g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )

for X,Y ∈ TM . An indefinite almost contact metric manifold M is called an
indefinite Kenmotsu manifold if [9],

(3) (▽Xϕ)Y = −g(ϕX, Y )V + η(Y )ϕX, ▽XV = −X + η(X)V

for X,Y ∈ TM , where ▽ denotes the Levi-Civita connection on M . A sub-

manifold Mm immersed in a semi-Riemannian manifold (M
m+n

, g) is called a
lightlike submanifold [1] if it admits a degenerate metric g induced from g on
M . If g is degenerate on the tangent bundle TM of M , then M is called a
lightlike submanifold. For a degenerate metric g on M , TM⊥ is a degenerate
n-dimensional subspace of TxM̄ . Thus both TxM and TxM

⊥ are degenerate
orthogonal subspaces but not complementary to each other. Therefore there
exists a subspace Rad(TM) = TxM ∩ TxM

⊥, known as Radical subspace. If
the mapping Rad(TM) : M −→ TM, such that x ∈ M 7→ Rad(TxM), defines
a smooth distribution of rank r > 0 on M , then M is said to be an r-lightlike
submanifold and the distribution Rad(TM) is said to be radical distribution
on M . The non-degenerate complementary subbundles S(TM) and S(TM⊥)
of Rad(TM) are known as screen distribution in TM and screen transversal
distribution in TM⊥ respectively, i.e.,

(4) TM = Rad(TM) ⊥ S(TM) & TM⊥ = Rad(TM) ⊥ S(TM⊥).
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Let ltr(TM)(lightlike transversal bundle) and tr(TM)(transversal bundle) be
complementary but not orthogonal vector bundles to Rad(TM) in S(TM⊥)⊥

and TM in TM̄ |M respectively. Then, the transversal vector bundle tr(TM)
is given by[3]

(5) tr(TM) = ltr(TM) ⊥ S(TM⊥).

From (4) and (5), we get

(6) TM̄ |M= TM ⊕ tr(TM) = (Rad(TM)⊕ ltr(TM)) ⊥ S(TM) ⊥ S(TM⊥).

Theorem 2.1. [1] Let (M, g, S(TM), S(TM⊥)) be an r-lightlike submani-
fold of a semi-Riemannian manifold (M̄, ḡ). Then there exists a complementary
vector bundle ltr(TM) of Rad(TM) in S(TM⊥)⊥ and a basis of Γ(ltr(TM)|u)
consisting of a smooth section {Ni} of S(TM⊥)⊥|u, where u is a coordinate
neighbourhood of M such that

(7) ḡij(Ni, ξj) = δij , ḡij(Ni, Nj) = 0

for any i, j ∈ {1, 2, . . . , r}.

A submanifold (M, g, S(TM), S(TM⊥)) of M is said to be
(i) r-lightlike if r < min{m,n};
(ii) coisotropic if r = n < m,S(TM⊥) = 0;
(iii) isotropic if r = m = n, S(TM) = 0;
(iv) totally lightlike if r = m = n, S(TM) = 0 = S(TM⊥).

Let ▽,▽ and ▽t denote the linear connections on M,M and vector bundle
tr(TM), respectively. Then the Gauss and Weingarten formulae are given by

(8) ∇XY = ∇XY + h(X,Y ),∀ X,Y ∈ Γ(TM),

(9) ∇XU = −AUX +∇t
XU,∀ U ∈ Γ(tr(TM)),

where {∇XY,AUX} and {h(X,Y ),∇t
XU} belong to Γ(TM) and Γ(tr(TM))

respectively, the linear connections ▽ and ▽t are onM and on the vector bundle
tr(TM) respectively, the second fundamental form h is a symmetric F (M)-
bilinear form on Γ(TM) with values in Γ(tr(TM)) and the shape operator AV

is a linear endomorphism of Γ(TM).
From (8) and (9) , for any X,Y ∈ Γ(tr(TM)), N ∈ Γ(ltr(TM)) and W ∈
Γ(S(TM⊥)), we have

(10) ∇XY = ∇XY + hl(X,Y ) + hs(X,Y ),

(11) ∇XN = −ANX +∇l
X(N) +Ds(X,N),

(12) ∇XW = −AWX +∇s
X(W ) +Dl(X,W ),

whereDl(X,W ), Ds(X,N) are the projections of ▽t on Γ(ltr(TM)) and Γ(S(TM⊥))
respectively, ▽l, ▽s are linear connections on Γ(ltr(TM)) and Γ(S(TM⊥)), re-
spectively and AN , AW are shape operators on M with respect to N and W ,
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respectively.
Using (8) and (10)-(12) , we obtain

(13) g(hs(X,Y ),W ) + g(Y,D1(X,W )) = g(AWX,Y ),

(14) g(Ds(X,N),W ) = g(N,AWX).

for X,Y ∈ Γ(TM), ξ ∈ Γ(Rad(TM)), W ∈ Γ(S(TM⊥)) and N ∈ Γ(ltr(TM)).

If the induced connection ∇ and transversal connection ∇t
X are not metric

connections, then for X,Y, Z ∈ Γ(TM) and U,U
′ ∈ Γ(tr(TM)), following

formulae represent induced connection and transversal connection respectively

(15) (∇Xg)(Y, Z) = ḡ(hl(X,Y ), Z) + ḡ(hl(X,Z), Y ),

(16) (∇t
X ḡ)(U,U

′
) = −{ḡ(AUX,U

′
) + ḡ(AU ′X,U)}.

Let P denote the projection of TM on S(TM) and let ▽∗,▽∗t denote the linear
connections on S(TM) and Rad(TM), respectively. Then from the decompo-
sition of tangent bundle of lightlike submanifolds, we have

(17) ∇XPY = ∇∗
XPY + h∗(X,PY ),

(18) ∇Xξ = −A∗
ξX +∇∗t

X(ξ)

for X,Y ∈ Γ(TM) and ξ ∈ Γ(RadTM), where h∗, A∗ are the second fun-
damental form and shape operator of distributions S(TM) and Rad(TM),
respectively. From (14) and (15), we get

(19) ḡ(hl(X,PY ), ξ) = g(A∗
ξX,PY ),

(20) ḡ(h∗(X,PY ), N) = g(ANX,PY ),

(21) ḡ(hl(X, ξ), ξ) = 0, A∗
ξξ = 0.

3. Semi-Slant Lightlike Submanifolds

In this section, before introducing the semi-slant lightlike submanifolds of
an indefinite Kenmotsu manifold, we state the following Lemmas for later use:

Lemma 3.1. [8] Let M be a q-lightlike submanifold of an indefinite Ken-
motsu manifold M of index 2q with structure vector field V tangent to M . Sup-
pose that ϕRadTM is a distribution onM such that RadTM∩ϕRadTM = {0}.
Then ϕltrTM is a subbundle of the screen distribution S(TM) and ϕRadTM∩
ϕltrTM = {0}.
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Lemma 3.2. [8] Let M be a q-lightlike submanifold of an indefinite Ken-
motsu manifold M of index 2q with structure vector field V tangent to M . Sup-
pose that ϕRadTM is a distribution onM such that RadTM∩ϕRadTM = {0}.
Then any complementary distribution to ϕRadTM ⊕ ϕltr(TM) in S(TM) is
Riemannian.

Definition 3.3. Let M be a q-lightlike submanifold of an indefinite Ken-
motsu manifold M of index 2q such that 2q < dim(M) with structure vector
field V tangent to M . Then we say that M is a semi-slant lightlike submanifold
of M if the following conditions are satisfied:

(i) ϕRadTM is distribution on M such that RadTM ∩ ϕRadTM = {0},
(ii) there exist non-degenerate orthogonal distributions D1 and D2 on M

such that

S(TM) = (ϕRadTM ⊕ ϕltr(TM))⊕orth D1 ⊕orth D2 ⊕orth {V },
(iii) the distribution D1 is an invariant distribution, i.e. ϕD1 = D1,
(iv) the distribution D2 = D2 ⊥ {V } is slant with angle θ(6= 0), i.e. for each

x ∈ M and each non-zero vector X ∈ (D2)x, if X and V are linearly in-
dependent, then the angle θ between ϕX and the vector subspace (D2)x
is a non-zero constant, which is independent of choice of x ∈ M and
X ∈ (D2)x.
This constant angle θ is called the slant angle of distribution D2. A semi-
slant lightlike submanifold is said to be proper if D1 6= {0}, D2 6= {0}
and θ 6= {0}.

Example 3.4. Let (M̄ = R11
2 , ḡ) be a semi-Euclidean space of signature

(-,+,+,+,+,+,+,+,+,+,+) with respect to the canonical basis

{∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂x7, ∂x8, ∂x9, ∂x10, ∂Z}.
Consider a submanifold M of R11

2 , defined by x1 = x8 = u1, x2 = u2, x3 =
sinu3, x4 = cosu3, x5 = u5, x6 = −u3sinu6, x7 = −u3cosu6, x9 = u7, x10 =
u8, ∂Z = V. The local frame of TM is given by

Z1 = e−z(∂x1 + ∂x8)

Z2 = e−z∂x2

Z3 = e−z(cosu3∂x3 − sinu3∂x4 − sinu6∂x6 − cosu6∂x7)

Z4 = e−z(−u3cosu6∂x6 + u3sinu6∂x7)

Z5 = e−z∂x9

Z6 = e−z∂x10

Z7 = e−z∂x5

Z8 = V = ∂Z.
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Hence, RadTM = span{Z1} and ϕRadTM = span{Z2 + Z7}.
Next, we have D̄2 = D2 ⊥ {V } = {Z3, Z4} ⊥ V.
Then M is slant lightlike with slant angle π/4. By direct calculations, we get
S(TM⊥)=span{

W1 = e−z(cosu3∂x3 − sinu3∂x4 − sinu6∂x6 − cosu6∂x7)

W2 = e−z(−u3cosu6∂x6 + u3sinu6∂x7)

and ltr(TM) is spanned byN = e−z/2(−∂x1+∂x9) such that ϕN = −Z2+Z7 ∈
S(TM).
Now, ϕZ5 = −Z6, which implies that D1 = {Z5, Z6} is invariant with respect
to ϕ.
Hence, M is semi-slant lightlike submanifold of R11

2 .

From above definition, we have the following decomposition:

(22) TM = RadTM⊕orth(ϕRadTM⊕ϕltr(TM))⊕orthD1⊕orthD2⊕orth{V }.

For any vector field X tangent to M , we put

(23) ϕX = fX + FX

where fX and FX are tangential and transversal part of ϕX respectively. we
denote the projections on RadTM,ϕRadTM,ϕltr(TM), D1 and D2 ⊥ {V } in
TM by P1, P2, P3, Q1 and Q2 respectively. Then, for any X ∈ Γ(TM), we get

(24) X = P1X + P2X + P3X +Q1X +Q2X,

where Q2X = Q2X + η(X)V. Now applying ϕ to (24), we get

(25) ϕX = ϕP1X + ϕP2X + FP3X + fQ1X + fQ2X + FQ2X,

where ϕP1X ∈ Γ(ϕRadTM), ϕP2X ∈ Γ(RadTM), FP3X ∈ Γ(ltrTM),
fQ1X ∈ Γ(D1), fQ2X ∈ Γ(D2), FQ2X ∈ Γ(S(TM⊥)). Using (3), (25) and
(9) -(11) and identifying the components on
RadTM,ϕRadTM,ϕltr(TM), D1, D2, ltr(TM), (S(TM⊥)) and {V }, we ob-
tain

P1(▽XϕP1Y ) + P1(▽XϕP2Y ) + P1(▽XfQ1Y ) + P1(▽XfQ2Y )

= P1(AFP3Y X) + P1(AFQ2Y X) + ϕP2▽XY + η(Y )ϕP2X,
(26)

P2(▽XϕP1Y ) + P2(▽XϕP2Y ) + P2(▽XfQ1Y ) + P2(▽XfQ2Y )

= P2(AFP3Y X) + P2(AFQ2Y X) + ϕP1▽XY + η(Y )ϕP1X,
(27)

P3(▽XϕP1Y ) + P3(▽XϕP2Y ) + P3(▽XfQ1Y ) + P3(▽XfQ2Y )

= P3(AFP3Y X) + P3(AFQ2Y X) +Bhl(X,Y ),
(28)

Q1(▽XϕP1Y ) +Q1(▽XϕP2Y ) +Q1(▽XfQ1Y ) +Q1(▽XfQ2Y )

= Q1(AFP3Y X) +Q1(AFQ2Y X) + fQ1▽XY + η(Y )fQ1X,
(29)
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Q2(▽XϕP1Y ) +Q2(▽XϕP2Y ) +Q2(▽XfQ1Y ) +Q2(▽XfQ2Y )

= Q2(AFP3Y X) +Q2(AFQ2Y X) + fQ2▽XY +Bhs(X,Y ) + η(Y )fQ2X,

(30)

hl(X,ϕP1Y ) + hl(X,ϕP2Y ) + hl(X, fQ1Y ) + hl(X, fQ2Y )

= FP3▽XY − ▽l
X(X,FP3Y )−Dl(X,FQ2Y ) + η(Y )FP3X,

(31)

hs(X,ϕP1Y ) + hs(X,ϕP2Y ) + hs(X, fQ1Y ) + hs(X, fQ2Y )

= FQ2▽XY − ▽s
X(X,FQ2Y )−Ds(X,FP3Y ) + Chs(X,Y ),

(32)

η(▽XϕP1Y ) + η(▽XϕP2Y ) + η(▽XfQ1Y ) + η(▽XfQ2Y )

= η(AFP3Y X) + η(AFQ2Y X)− g(ϕX, Y )V.
(33)

Theorem 3.5. Let M be a semi-slant lightlike submanifold of an indefinite
Kenmotsu manifold M with structure vector field V tangent to M . Then, for
any X,Y ∈ Γ(RadTM), RadTM is integrable if and only if

(i) P1(▽XϕP1Y ) = P1(▽Y ϕP1X), Q1(▽XϕP1Y ) = Q1(▽Y ϕP1X) and
Q2(▽XϕP1Y ) = Q2(▽Y ϕP1X),

(ii) hl(Y, ϕP1X) = hl(X,ϕP1Y ) and hs(Y, ϕP1X) = hs(X,ϕP1Y ).

Proof. Let M be a semi-slant lightlike submanifold of an indefinite Ken-
motsu manifold M . Let X,Y ∈ Γ(RadTM). From (26), we have

(34) P1(▽XϕP1Y ) = ϕP2▽XY.

Interchanging X and Y in (34) and subtracting resulting equation from (34)
we obtain

(35) P1(▽XϕP1Y )− P1(▽Y ϕP1X) = ϕP2[X,Y ].

From (29), we have

(36) Q1(▽XϕP1Y ) = ϕQ1▽XY.

Interchanging X and Y in (36) and subtracting resulting equation from (36),
we get

(37) Q1(▽XϕP1Y )−Q1(▽Y ϕP1X) = ϕQ1[X,Y ].

From (30), we obtain

(38) Q2(▽XϕP1Y ) = fQ2▽XY +Bhs(X,Y ).

Interchanging X and Y in (38) and subtracting resulting equation from (38),
we get

(39) Q2(▽XϕP1Y )−Q2(▽Y ϕP1X) = fQ2[X,Y ].

In view of (31), we obtain

(40) hl(X,ϕP1Y ) = FP3▽XY.
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Interchanging X and Y in (40) and subtracting resulting equation from (40),
we have

(41) hl(X,ϕP1Y )− hl(Y, ϕP1X) = FP3[X,Y ].

Similarly, from (32), we get

(42) hs(X,ϕP1Y ) = Chs(X,Y ) + FQ2▽XY,

which gives

(43) hs(X,ϕP1Y )− hs(Y, ϕP1X) = FQ2[X,Y ].

From equations (35), (37), (39), (41) and (43), we conclude that Rad(TM) is
integrable.

Theorem 3.6. Let M be a semi-slant lightlike submanifold of an indefinite
Kenmotsu manifold M with structure vector field V tangent to M . Then, for
any X,Y ∈ Γ(D1 ⊕ {V }), D1 ⊕ {V } is integrable if and only if

(i) P1(▽XfQ1Y ) = P1(▽Y fQ1X), P2(▽XfQ1Y ) = P2(▽Y fQ1X) and
Q2(▽XfQ1Y ) = Q2(▽Y fQ1X),

(ii) hl(Y, fQ1X) = hl(X, fQ1Y ) and hs(Y, fQ1X) = hs(X, fQ1Y ).

Proof. Let M be a semi-slant lightlike submanifold of an indefinite Ken-
motsu manifold M . Let X,Y ∈ Γ(D1 ⊕ {V }). From (26), we have

(44) P1(▽XfQ1Y ) = ϕP2▽XY.

Interchanging X and Y in (44) and subtracting resulting equation from (44),
we get

(45) P1(▽XfQ1Y )− P1(▽Y fQ1X) = ϕP2[X,Y ].

From (27), we obtain

(46) P2(▽XfQ1Y ) = ϕP1▽XY.

Interchanging X and Y in (46) and subtracting resulting equation from (46),
we get

(47) P2(▽XfQ1Y )− P2(▽Y fQ1X) = ϕP1[X,Y ].

From (30), we have

(48) Q2(▽XfQ1Y ) = fQ2▽XY +Bhs(X,Y ).

Interchanging X and Y in (48) and subtracting resulting equation from (48),
we get

(49) Q2(▽XfQ1Y )−Q2(▽Y fQ1X) = fQ2[X,Y ].

In view of (31), we get

(50) hl(X, fQ1Y ) = FP3▽XY.
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Interchanging X and Y in (50) and subtracting resulting equation from (50),
we obtain

(51) hl(X, fQ1Y )− hl(Y, fQ1X) = FP3[X,Y ].

Similarly, from (32), we get

(52) hs(X, fQ1Y ) = Chs(X,Y ) + FQ2▽XY,

which gives

(53) hs(X, fQ1Y )− hs(Y, fQ1X) = FQ2[X,Y ].

From equations (45), (47), (49), (51) and (53), we find that D1 ⊕ {V } is inte-
grable.

Theorem 3.7. Let M be a semi-slant lightlike submanifold of an indefinite
Kenmotsu manifold M with structure vector field V tangent to M . Then, for
all X,Y ∈ Γ(D2 ⊕ {V }), D2 ⊕ {V } is integrable if and only if

(i) P1(▽XfQ2Y − ▽Y fQ2X) = P1(AFQ2Y X −AFQ2XY ),
(ii) P2(▽XfQ2Y − ▽Y fQ2X) = P2(AFQ2Y X −AFQ2XY ),
(iii) Q1(▽XfQ2Y − ▽Y fQ2X) = Q1(AFQ2Y X −AFQ2XY ),
(iv) hl(X, fQ2Y )− hl(Y, fQ2X) = Dl(Y, FQ2X)−Dl(X,FQ2Y ).

Proof. Let M be a semi-slant lightlike submanifold of an indefinite Ken-
motsu manifold M . Let X,Y ∈ Γ(D1 ⊕ {V }).
From (26), we have

(54) P1(▽XfQ2Y )− P1(AFQ2Y X) = ϕP2▽XY.

Interchanging X and Y in (54) and subtracting resulting equation from (54),
we obtain

(55) P1(▽XfQ2Y − ▽Y fQ2X)− P1(AFQ2Y X − (AFQ2XY )) = ϕP2[X,Y ].

From (27), we get

(56) P2(▽XfQ2Y )− P2(AFQ2Y X) = ϕP1▽XY.

Interchanging X and Y in (56) and subtracting resulting equation from (56),
we have

(57) P2(▽XfQ2Y − ▽Y fQ2X)− P2(AFQ2Y X − (AFQ2XY )) = ϕP1[X,Y ].

In view of (29), we obtain

(58) Q1(▽XfQ2Y )−Q1(AFQ2Y X) = fQ1▽XY.
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Interchanging X and Y in (58) and subtracting resulting equation from (58),
we have

(59) Q1(▽XfQ2Y − (▽Y fQ2X)−Q1(AFQ2Y X − (AFQ2XY )) = fQ1[X,Y ].

Similarly, from (31), we get

(60) hl(X, fQ2Y ) +Dl(X,FQ2Y ) = FP3▽XY,

which gives

(61)
hl(X, fQ2Y )− hl(Y, fQ2X) +Dl(X,FQ2Y )−Dl(Y, FQ2X) = FP3[X,Y ].

From equations (55), (57), (59) and (61), we find that D2 ⊕ {V } is integrable.

4. Foliations Determined by Distributions

In this section, we obtain necessary and sufficient conditions for foliations
determined by distributions on a semi-slant lightlike submanifold of an indefi-
nite Kenmotsu manifold to be totally geodesic.

Definition 4.1. [13] A semi-slant lightlike submanifold M of an indefinite
Kenmotsu manifold M is said to be mixed geodesic if its second fundamental
form h satisfies h(X,Y ) = 0, ∀X ∈ Γ(D1) and Y ∈ Γ(D2). Thus M is a
mixed geodesic semi-slant lightlike submanifold if hl(X,Y ) = 0, hs(X,Y ) = 0,
∀X ∈ Γ(D1) and Y ∈ Γ(D2).

Theorem 4.2. Let M be a semi-slant lightlike submanifold of an indefinite
Kenmotsu manifold M with structure vector field V tangent to M . Then, for
any X,Y ∈ Γ(RadTM) and Z ∈ Γ(S(TM)), RadTM defines a totally geodesic
foliation if and only if

g(▽XϕP2Z+▽XfQ1Z + ▽XfQ2Z − η(Z)ϕP1X,ϕY )

= g(AFP3ZX +AFQ2ZX,ϕY ).

Proof. Let M be a semi-slant lightlike submanifold of an indefinite Ken-
motsu manifold M with structure vector field V tangent to M . To prove
that RadTM defines totally geodesic foliation it is sufficient to show that
▽XY ∈ Γ(RadTM),∀X,Y ∈ Γ(RadTM). Since ▽ is a metric connection,
using equation (10), we get

(62) g(▽XY, Z) = g(▽XY, Z),

which implies

−g(▽XY, Z) = g(Y,▽XZ).
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Using (2) in g(▽XY, Z), we obtain

g(▽XZ, Y ) = g(ϕ▽XZ, ϕY ) + η(▽XZ)η(Y ),

Since η(Y ) = g(Y, V ) = 0, above equation reduces to

(63) g(▽XY, Z) = −g(ϕ▽XZ, ϕY ).

From (3), we have

▽XϕZ − ϕ▽XZ = −g(ϕX,Z)V + η(Z)ϕX,

which implies

(64) ▽XϕZ + g(ϕX,Z)V − η(Z)ϕX = ϕ▽XZ,

using (64) in (63) , we get

−g(ϕ▽XZ, ϕY ) =− g(▽XϕZ

+ g(ϕX,Z)V − η(Z)ϕX, ϕY ).

Using (25), we obtain

−g(ϕ▽XZ, ϕY ) =− g(▽X(ϕP2Z + FP3Z + fQ1Z + fQ2Z + FQ2Z)

+ g(ϕX,Z)V − η(Z)ϕX, ϕY ),

which reduces to

g(▽XY, Z) =− g(−AFP3ZX −AFQ2ZX + ▽XϕP2Z

+ ▽XfQ1Z + ▽XfQ2Z − η(Z)ϕP1X,ϕY ).

This proves the theorem.

Theorem 4.3. Let M be a semi-slant lightlike submanifold of an indefinite
Kenmotsu manifold M with structure vector field V tangent to M . Then, for
any X,Y ∈ Γ(D1⊕{V }), Z ∈ Γ(D2),W ∈ Γ(ϕltr(TM)) and N ∈ Γ(ltr(TM)),
D1 ⊕ {V } defines a totally geodesic foliation if and only if

(i) g(AFQ2ZX,ϕY ) = g(▽XfQ2Z, ϕY ),
(ii) AFP3Y X and ▽XϕN have no component in D1 ⊕ {V }.

Proof. Let M be a semi-slant lightlike submanifold of an indefinite Ken-
motsu manifold M with structure vector field V tangent to M .
To prove that D1 ⊕ {V } defines a totally geodesic foliation, it is sufficient to
show that ▽XY ∈ Γ(D1 ⊕ {V }),∀X,Y ∈ Γ(D1 ⊕ {V }).
Since ▽ is a metric connection, using equation (10), we get

(65) g(▽XY, Z) = g(▽XY, Z),

which implies

−g(▽XY, Z) = g(Y,▽XZ).

Using (2), we obtain

(66) g(▽XZ, Y ) = g(ϕ▽XZ, ϕY ) + η(▽XZ)η(Y ).
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Using (3) in (66), we get

g(▽XZ, Y ) = g(▽XϕZ, ϕY ) + η(▽XZ)η(Y ),

= g(▽XfQ2Z + ▽XFQ2Z, ϕY ) + η(▽XZ)η(Y )

which reduces to

(67) −g(▽XY, Z) = g(▽XfQ2Z −AFQ2ZX,ϕY ) + η(▽XZ)η(Y ).

Now, for any X,Y ∈ D1 ⊕ {V } and N ∈ Γ(ltr(TM)), we obtain

g(▽XY,N) = −g(▽XN,Y ).

From (2), we obtain

(68) g(▽XN,Y ) = g(ϕ▽XN,ϕY ) + η(▽XN)η(Y ).

Using (3) in (68), we get

(69) −g(▽XY,N) = g(▽XϕN, ϕY ) + η(▽XN)η(Y ).

Now, for any X,Y ∈ D1 ⊕ {V } and W ∈ Γ(ϕltr(TM)), we get

g(▽XY,W ) = −g(▽XW,Y ).

From (2), we obtain

(70) g(▽XW,Y ) = g(ϕ▽XW,ϕY ) + η(▽XW )η(Y ).

Using (3) in (70), we have

(71) g(▽XW,Y ) = g(▽XϕW,ϕY ) + η(▽XW )η(Y ),

= g(▽XFP3Y, ϕY ) + η(−AWX)η(Y )

which reduces to

(72) −g(▽XY,W ) = g(−AFP3Y X,ϕY )− η(AWX)η(Y ).

Thus, we obtain the required results.

Theorem 4.4. Let M be a semi-slant lightlike submanifold of an indefinite
Kenmotsu manifold M with structure vector field V tangent to M . Then, for
any X,Y ∈ Γ(D2⊕{V }), Z ∈ Γ(D1),W ∈ Γ(ϕltr(TM)) and N ∈ Γ(ltr(TM)),
D2 ⊕ {V } defines a totally geodesic foliation if and only if

(i) g(▽XfQ1Z, fY ) = −g(hs(X, fQ1Z), FY ) and ▽XZ has no component
in {V },

(ii) g(▽XϕN, fY ) = −g(hs(X,ϕN), FY ) and ▽XN has no component in
{V },

(iii) g(AFP3WX, fY ) = g(Ds(X,FP3W ), FY ) and ▽XW has no component
in {V }.



164 Ramandeep Kaur, Gauree Shanker, Ankit Yadav, and Akram Ali

Proof. Let M be a semi-slant lightlike submanifold of an indefinite Ken-
motsu manifold M with structure vector field V tangent to M . To prove
that D2 ⊕ {V } defines a totally geodesic foliation, it is sufficient to show that
▽XY ∈ Γ(D2 ⊕ {V }),∀X,Y ∈ Γ(D2 ⊕ {V }). Since ▽ is a metric connection,
using equation (10), we get

(73) g(▽XY, Z) = g(▽XY, Z)

which implies

−g(▽XY, Z) = g(Y,▽XZ).

Using (2), we obtain

(74) g(▽XZ, Y ) = g(ϕ▽XZ, ϕY ) + η(▽XZ)η(Y )

using (3) in (74), we have

g(▽XZ, Y ) =g(▽XfQ1Z, ϕY ) + η(▽XZ)η(Y )

=g(▽XfQ1Z, fY + FY ) + η(▽XZ)η(Y )

which reduces to

(75) −g(▽XY, Z) = g(▽XfQ1Z, fY ) + g(hs(X, fQ1Z), FY ) + η(▽XZ)η(Y ).

Now, for any X,Y ∈ D2 ⊕ {V } and N ∈ Γ(ltr(TM)), we obtain

g(▽XY,N) = −g(▽XN,Y ).

Using (2), we obtain

(76) g(▽XN,Y ) = g(ϕ▽XN,ϕY ) + η(▽XN)η(Y ).

Inserting (3) in (76), we have

g(▽XN,Y ) =g(▽XϕN, fY + FY ) + η(▽XN)η(Y )

=g(▽XϕN + hs(X,ϕN), fY + FY ) + η(▽XN)η(Y )

g(▽XY,N) =g(▽XϕN, fY ) + g(hs(X,ϕN), FY ) + η(▽XN)η(Y ).(77)

From (2), we get

(78) g(▽XW,Y ) = g(ϕ▽XW,ϕY ) + η(▽XW )η(Y ).

Using (3) in (78), we have

g(▽XW,Y ) = g(▽XFP3W,fY + FY ) + η(▽XW )η(Y )

which implies
(79)
−g(▽XY,W ) = g(−AFP3WX, fY ) + g(Ds(X,FP3W ), FY ) + η(▽XW )η(Y ).

This completes the proof.
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Theorem 4.5. Let M be a mixed geodesic semi-slant lightlike submanifold
of an indefinite Kenmotsu manifold M with structure vector field V tangent
to M . Then, for any X,Y ∈ Γ(D2 ⊕ {V }), Z ∈ Γ(D1),W ∈ Γ(ϕltr(TM)) and
N ∈ Γ(ltr(TM)), D2 ⊕ {V } defines a totally geodesic foliation if and only if

(i) ▽XfQ1Z has no component in D2 ⊕ {V },
(ii) g(▽XϕN, fY ) = −g(hs(X,ϕN), FY ) and ▽XN has no component in

{V },
(iii) g(AFP3WX, fY ) = g(Ds(X,FP3W ), FY ) and ▽XW has no component

in {V }.

Proof. Let M be a mixed geodesic semi-slant lightlike submanifold of an
indefinite Kenmotsu manifold M with structure vector field V tangent to M .
To prove that D2 ⊕ {V } defines a totally geodesic foliation, it is sufficient to
show that ▽XY ∈ Γ(D2),∀X,Y ∈ Γ(D2)⊕ {V }. Since M is a mixed geodesic
semi-slant lightlike submanifold of an indefinite Kenmotsu manifold, h(X,Y ) =
0 ∀X ∈ Γ(D1), Y ∈ Γ(D2), we get

hl(X,Y ) = 0, hs(X,Y ) = 0.

Putting hs(X,Y ) = 0, in (75), we get

−g(▽XY, Z) = g(▽XfQ1Z, fY ) + η(▽XZ)η(Y ).

This gives ▽XfQ1Z has no component in D2 and ▽XZ has no component in
{V }.

(ii) g(▽XϕN, fY ) = −g(hs(X,ϕN), FY ) and ▽XN has no component in
{V },

(iii) g(AFP3WX, fY ) = g(Ds(X,FP3W ), FY ) and ▽XW has no component
in {V },

are same as (ii), (iii) part of Theorem 4.4.
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