References
- SS. Dragomir and RP. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11(5) (1998), 91-95. https://doi.org/10.1016/S0893-9659(98)00086-X
- SS. Dragomir and CEM. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Its Applications, RGMIA Monograph 2002.
- SS. Dragomir, J. Pecaric and LE.Persson, Some inequalities of Hadamard Type, Soochow Journal of Mathematics, 21(3) (1995), pp. 335-341.
- J. Hadamard, Etude sur les proprietes des fonctions entieres en particulier d'une fonction consideree par Riemann, J. Math. Pures Appl. 58 (1893), 171-215.
- DA. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, An. Univ. Craiova Math. Comp. Sci. Ser. 34 (2007), 82-87.
- I. Iscan, Generalization of different type integral inequalities via fractional integrals for functions whose second derivatives absolute values are quasi-convex, Konuralp journal of Mathematics, 1(2) (2013), 67-79.
- I. Iscan, New general integral inequalities for quasi-geometrically convex functions via fractional integrals, Journal of Inequalities and Applications, 2013 (2013):491, 15 pages. https://doi.org/10.1186/1029-242X-2013-491
- I. Iscan, On generalization of different type inequalities for harmonically quasi-convex functions via fractional integrals, Applied Mathematics and Computation, 275 (2016), 287-298. https://doi.org/10.1016/j.amc.2015.11.074
- I. Iscan, S. Turhan and S. Maden, Hermite-Hadamard and Simpson-like type inequalities for differentiable p-quasi-convex functions, Filomat, 31(19) (2017), 5945-5953. https://doi.org/10.2298/FIL1719945I
- I. Iscan and M. Kunt, Hermite-Hadamard-Fejer type inequalities for quasi-geometrically convex functions via fractional integrals, Journal of Mathematics, 2016, (2016), Article ID 6523041, 7 pages.
- H. Kadakal, Hermite-Hadamard type inequalities for trigonometrically convex functions, Scientific Studies and Research. Series Mathematics and Informatics, 28(2) (2018), 19-28.
- G. Zabandan, A new refinement of the Hermite-Hadamard inequality for convex functions, J. Inequal. Pure Appl. Math. 10(2) (2009), Article ID 45, 7 pages.