DOI QR코드

DOI QR Code

Parallel Control Method of a Modular DC/DC Converter for Electric Vehicle Chargers

전기차 충전기용 모듈형 DC/DC 컨버터의 병렬 제어 기법

  • Choi, Hye-Won (Dept. of Electrical and Computer Engineering, Ajou University) ;
  • Lee, Kyo-Beum (Dept. of Electrical and Computer Engineering, Ajou University)
  • Received : 2021.02.23
  • Accepted : 2021.03.27
  • Published : 2021.03.31

Abstract

This paper proposes a parallel control method of a modular DC/DC converter for electric vehicle (EV) chargers. The EV chargers have been increasing the power capacity using modular converters. There are output current imbalances between the modules, which are caused by the difference of the impedance, delay of the gate driver, and error of the sensors. The conventional strategies for the equal distribution of the output current cause the voltage drop or the high volume and cost of the converters. Therefore, the proposed parallel control strategy effectively balances the output current of modules using a current compensation method. The proposed strategy is verified by simulations. Additional experimental results will be added under various conditions.

본 논문에서는 전기차 충전기용 모듈형 DC/DC 컨버터의 병렬 제어 기법을 제안한다. 전기차 충전기는 모듈형 컨버터를 적용하여 출력 전력 용량이 증가되고 있지만, 모듈간 구성 요소의 차이, 게이트 드라이버의 지연, 센싱 오차 등에 의해 출력 전류 불균형이 발생하며, 이는 전체 시스템의 효율 및 신뢰성 저하를 야기한다. 출력 전류 균등 분배를 위한 기존의 기법들은 전압 강하 또는 시스템 부피 및 비용이 증가한다는 단점을 갖는다. 본 논문에서는 전류 보상 성분을 고려한 병렬 제어 기법을 적용하여 시스템의 하드웨어 변동없이 출력 전류 균등 분배를 달성한다. 시뮬레이션을 통하여 제안하는 병렬 제어 기법의 성능 및 타당성을 검증한다.

Keywords

References

  1. K.-B. Lee, "Advanced Power Electronics, munundang," 2019, ISBN 979-11-5692-402-9.
  2. K. M. Bhargavi and N. S. Jayalakshmi, "A New Control Strategy for Plug-in Electric Vehicle of DC Microgrid with PV and Wing Power Integration," J. Electr. Eng. Technol., vol.14, no.1, pp.13-25, 2019. DOI: 10.1007/s42835-018-00013-9
  3. H. J. Raherimihaja, Q. Zhang, T. Na, M. Shao, and J. Wang, "A Three-Phase Integrated Battery Charger for EVs Based on Six-Phase Open-End Wing Machine," IEEE Trans. Power Electron., vol.35, no.11, pp.12122-12132, 2020. https://doi.org/10.1109/tpel.2020.2986798
  4. W. Zhou and X. Zhu, "Modular Field Testing System for the Electric Vehicle Off-Board Charger," IET Electr. Syst. Transp., vol.9, no.4, pp.159-167, 2019. DOI: 10.1049/iet-est.2018.5091
  5. S.-H. Moon, S.-T. Jou, and K.-B. Lee, "Performance Improvement of a Bidirectional DC-DC Converter for Battery chargers Using an LCLC Filter," J. Elect. Eng. Tech., vol.10, no.2, pp.560-573, 2015. DOI: 10.5370/JEET.2015.10.2.560
  6. H.-W. Choi, S.-M. Kim, J. Kim, Y. Cho, and K.-B. Lee, "Deadbeat Predictive Direct Power Control of Interleaved Buck Converter-Based Fast Battery Chargers for Electric Vehicles," J. Power Electron., vol.20, no.5, pp.1162-1171, 2020. DOI: 10.1007/s43236-020-00106-7
  7. Q. Zhang, X. Zhuang, Y. Liu, C. Wang, and H. Guo, "A Novel Autonomous Current-Sharing Control Strategy for Multiple Paralleled DC-DC Converters in Islanded DC Microgrid," Energies, vol.12, no.20, pp.1-22, 2019. DOI: 10.3390/en12203951
  8. J.-S. Bae, T.-H. Kim, S.-H. Son, H.-S. Kim, C.-H. Yu, and S.-R. Jang, "Series Stacked Modular DC-DC Converter using Simple Voltage Balancing Method," IEEE Trans. Power Electron., vol.36, no.3, pp.2471-2475, 2021. DOI: 10.1109/TPEL.2020.3015103
  9. B. Xie, J. Wang, Y. Jin, Y. Ji, and C. Ma, "Power Distribution Control Scheme for a Three-phase Interleaved DC/DC Converter in the Charging and Discharging Processes fo a Battery Energy Storage System," J. Power Electron., vol.18, no.4, pp.1211-1222, 2018. DOI: 10.6113/JPE.2018.18.4.1211
  10. H.-W. Choi, S.-M. Kim, J. Kim, Y. Cho, and K.-B. Lee, "Current-Balancing Strategy for Multileg Interleaved DC/DC Converters of Electric-Vehicle Chargers," J. Power Electron., vol.21, pp.94-102, 2021. DOI: 10.1007/s43236-020-00172-x
  11. M. A. Pagliosa, T. B. Lazzarin, and I. Barbi, "Modular Two-Switch Flyback Converter and Analysis of Voltage-Balancing Mechanism for Input-Series and Output-Series Connection," IEEE Trans. Power Electron., vol.34, no.9, pp.8317-8328, 2019. DOI: 10.1109/TPEL.2018.2886072
  12. T. Li and L. Parsa, "Design, Control, and Analysis of a Fault-Tolerant Softswitching DC-DC Converter for High-Power High-Voltage Applications," IEEE Trans. Power Electron., vol.33, no.2, pp.1094-1104, 2018. DOI: 10.1109/TPEL.2017.2684832
  13. X. Lu, J. M. Guerrero, K. Sun, and J. C. Vasquez, "An Improved Droop Control Method for DC Microgrids Based on Low Bandwidth Communication With DC Bus Voltage Restoration and Enhanced Current Sharing Accuracy," IEEE Trans. Power Electron., vol.29, no.4, pp.1800-1812, Apr. 2014. https://doi.org/10.1109/TPEL.2013.2266419
  14. B. M. H. Jassim, B. Zahawi, and D. J. Atkinson, "Average Current Control for Parallel Connected Converters," J. Power Electron., vol.19, no.5, pp.1153-1161, 2019. DOI: 10.6113/JPE.2019.19.5.1153
  15. H.-C. Chen, C.-Y. Lu, and U. S. Rout, "Decoupled Master-Slave Current Balancing Control for Three-Phase Interleaved Boost Converts," IEEE Trans. Power Electron., vol.33, no.5, pp.3683-3686, 2018. DOI: 10.1109/TPEL.2017.2760887
  16. H. Jo, J. Lee, and H. Cha, "Parallel Operation of Three-Phase Bi-Directional Isolated Interleaved DC-DC Converters for The Battery Charge/Discharge System," Trans. Korean Inst. Power Electron., vol.19, no.1, pp.15-22, 2014. DOI: 10.6113/TKPE.2014.19.1.15
  17. S. Augustine, K. Mishra, and N. Lakshminarasamma, "Adaptive Droop Control Strategy for Load Sharing and Circulating Current Minimization in Low-Voltage Standalone DC Microgrid," IEEE Trans. Sustain. Energy, vol.6, no.1, pp.132-141, 2015. DOI: 10.1109/TSTE.2014.2360628
  18. P. M. Le, X. H. T. Pham, H. M. Nguyen, D. D. V. Hoang, T. D. Nguyen, and D. N. Vo, "Line Impedance Estimation Based Adaptive Droop Control Method for Parallel Inverters," J. Power Electron., vol.18, no.1, pp.234-250, 2018. DOI: 10.6113/JPE.2018.18.1.234
  19. P. Jang, "A Study on the Droop Method with Improved Current Distribution Characteristics," J. Inst. Korean Electr. Electron. Eng., vol.23, no.3, pp.785-792, 2019. DOI: 10.7471/ikeee.2019.23.3.785