DOI QR코드

DOI QR Code

Electrical and optical properties of ITO films annealed at high humidity

고습에서 열처리된 ITO 박막의 전기적 및 광학적 특성

  • Ma, Tae Young (Dept. of Electrical Engineering & ERI, Gyeongsang National University) ;
  • Park, Ki Cheol (Dept. of Semiconductor Engineering & ERI, Gyeongsang National University)
  • Received : 2021.02.02
  • Accepted : 2021.03.22
  • Published : 2021.03.31

Abstract

The ~185 nm thick ITO films deposited by high frequency magnetron sputtering were annealed at 100% humidity. Annealing was performed at 200℃, 250℃, 300℃, 350℃, 400℃ and 450℃ for 4 hours, respectively. Variations in resistivity, electron concentration, and mobility by high-humidity annealing were investigated. The stress change was estimated from the XRD results, and the surface morphology of films was observed through the FESEM micrographs. After measuring the light transmittance, the energy-band-gap was obtained and analyzed with the Burnstein-Moss effect.

고주파 마그네트론 스퍼터링으로 증착된 ~185 nm 두께의 ITO막을 습도 100%에서 열처리하였다. 온도 200 ℃, 250 ℃, 300 ℃, 350 ℃, 400 ℃ 및 450 ℃에서 각각 4시간 동안 열처리하였다. 고습 열처리에 따른 저항률, 전자농도 및 이동도 변화를 조사하였다. XRD결과로 스트레스 변화를 계산하였으며, FESEM 사진을 통해 ITO막의 표면형상을 관찰하였다. 광투과율을 측정한 후 에너지 밴드 갭을 구하였으며, Burnstein-Moss 효과와 비교 및 분석하였다.

Keywords

References

  1. Jiwoong Kim etc., "High temperature optical properties of indium tin oxide thin films," Sci. Rep. vol.10, pp.12486, 2020. DOI: 10.1038/s41598-020-69463-4
  2. Robi S. Datta etc., "Flexible two dimensional indium tin oxide fabricated using a liquid metal printing technique," Nat. Electron, vol.3, pp.51-58, 2020. DOI: 10.1038/s41928-019-0353-8
  3. H. Zhu, J. Hüpkes, E. Bunte, A. Gerber, S. M. Huang, "Influence of working pressure on ZnO:Al films from tube targets for silicon thin film solar cells," Thin Solid Films, vol.518, pp.4997-5002, 2010. DOI: 10.1016/j.tsf.2010.02.065
  4. W. R. Runyan, Semiconductor measurements and instrumentation, McGRAW-Hill Book Company, 1975.
  5. G. Legacy, X. Castel, "A gradual annealing of amorphous sputtered indium tin oxide: Crystalline structure and electrical characteristics," Thin Solid Films, vol.520, pp.4021-4025, 2012. DOI: 10.1016j.tsf.2012.01.029 https://doi.org/10.1016j.tsf.2012.01.029
  6. Alex Dolgonos, Thomas O. Mason, Kenneth R. Poeppelmeier, "Direct optical band gap measurement in polycrystalline semiconductors: a critical look at the Tauc method," J. Solid State chem., vol.240, pp.43-48. 2016. DOI: 10.1016/j.jssc.2016.05.010
  7. C. E. Kim, P. Moon, S. Kim, H. W. Jang, J. Bang, I. Yun, "Effect of carrier concentration on optical bandgap shift in ZnO:Ga thin films," Thin Solid Films, vol.518, pp.6304-6307, 2010. DOI: 10.1016/j..tsf.2010.03.042
  8. Saw KG etc., "New Insights on the Burstein-Moss Shift and Band Gap Narrowing in Indium-Doped Zinc Oxide Thin Films," PLoS ONE, vol.10, e0141180, 2015. DOI: 10.1371/journal.pone.0141180
  9. S. C. Jain, J. M. McGregor, and D. J. Roulston, "Band gap narrowing in novel III-V semiconductors," J. of Appl. Phys., vol.68, pp.3747, 1990. DOI: 10.1063/1.346291
  10. Di Yana and Andres Cuevas, "Empirical determination of the energy band gap narrowing in highly doped n+ silicon," J. of Appl. Phys., vol.114, pp.044508, 2013. DOI: 10.1063/1.4816694