DOI QR코드

DOI QR Code

Study on the Possibility of Recycling Crankcase Soot from Diesel Engine

디젤 엔진에서 생성된 크랭크케이스 수트의 재활용 가능성 연구

  • Kim, Soo-yang (Korean Register) ;
  • Choi, Jae-Hyuk (Division of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Rho, Bum-Seok (Korea Institute of Maritime and Fisheries Technology) ;
  • Kim, Junsoo (Korea Institute of Maritime and Fisheries Technology) ;
  • Kang, Jun (Division of Marine Engineering, Korea Maritime and Ocean University) ;
  • Lee, Won-Ju (Division of Marine Engineering, Korea Maritime and Ocean University)
  • 김수양 (한국선급) ;
  • 최재혁 (한국해양대학교 기관시스템공학부) ;
  • 노범석 (한국해양수산연수원) ;
  • 김준수 (한국해양수산연수원) ;
  • 강준 (한국해양대학교 기관공학과) ;
  • 이원주 (한국해양대학교 기관공학과)
  • Received : 2020.12.31
  • Accepted : 2021.02.25
  • Published : 2021.02.28

Abstract

In this study, we attempted to comparatively analyze the structural characteristics of soot generated from marine engines to review the possibility of recycling crankcase soot by classifying it as exhaust soot and crankcase soot. The annealing procedure was performed in an argon gas atmosphere at 2,000℃ and 2,700℃, and Raman spectroscopy and High-Resolution Transmission Electron Microscopy(HRTEM) were used to analyze the structural properties of the samples. Furthermore, digital image processing techniques were utilized to quantitatively analyze the acquired HRTEM images. The Raman analysis demonstrated a relatively high G/D ratio in the exhaust soot and annealing conditions at 2,700℃. In the HRTEM images, both soot were able to identify similar forms of graphite nanostructures, but there were limitations in that they could not quantitatively derive differences in the degree of graphite depending on the type of soot and annealing temperature. Thus, digital image processing quantitatively analyzed the length and tortuosity of the fringe of the HRTEM image, which is consistent with the Raman analysis. This meant that the exhaust soot had a more graphite structure than the crankcase soot, and that annealing at a higher temperature improved the graphite structure. This study confirmed that both the crankcase soot and exhaust soot can be recycled as a graphite materials.

본 연구에서는 선박용 디젤 엔진에서 발생되는 크랭크케이스 수트(soot)의 재활용 가능성을 검토하기 위하여, 수트를 배기관에서 발생하는 수트와 크랭크케이스에서 발생한 수트로 분류하고, 열처리에 따른 수트의 구조적 특성을 분석하였다. 열처리는 아르곤 가스 분위기에서 2,000℃와 2,700℃로 열처리를 수행하였고, 샘플의 구조적 특성 분석을 위해 라만분광법(Raman spectroscopy)과 고분해능 전자현미경(HRTEM)을 활용하였다. 또한, 취득한 HRTEM 이미지를 정량적으로 분석하기 위해 디지털 이미지 처리(Digital Image Processing) 기법을 활용하였다. 라만 분석 결과, 배기 수트와 2,700℃로 열처리한 수트에서 상대적으로 높은 G/D ratio가 나타났다. HRTEM 이미지에서는 두 수트 모두 유사한 형태의 흑연화된 나노 구조를 확인할 수 있었으나, 수트의 종류와 열처리 온도차에 따른 흑연화 정도의 차이를 정량적으로 도출할 수 없는 한계가 있었다. 이에 Digital Image Processing을 통해 HRTEM 이미지의 fringe의 길이와 곡률을 정량적으로 분석하였으며, 라만 분석과 일치하는 결과를 도출할 수 있었다. 이는 배기 수트가 크랭크케이스 수트에 비해 더 흑연화 된 구조를 가지는 것을 의미하며, 더 높은 온도에서 열처리 할 경우 흑연의 구조로 더 잘 발달함을 의미한다. 본 연구의 결과로 크랭크케이스 수트 역시 배기 수트와 마찬가지로 흑연계 재료로 재활용이 가능함을 확인하였다.

Keywords

References

  1. Choi, J. H., I. S. Cho, J. S. Lee, S. K. Park, W. J. Lee, H. J. Kim, H. J. Chang, J. Y. Kim, S. C. Jeong, and S. H. Park(2016), Characterization of carbonaceous particulate matter emitted from marine diesel engine, Journal of Mechanical Science and Technology, Vol. 30, No. 5, pp. 2011-2017. https://doi.org/10.1007/s12206-016-0407-z
  2. Clague, A. D. H., J. B. Donnet, T. K. Wang, and J. C. M. Peng(1999), A comparison of diesel engine soot with carbon black, Carbon, Vol. 37, No. 10, pp. 1553-1565. https://doi.org/10.1016/S0008-6223(99)00035-4
  3. Ess, M. N., H. Bladt, W. Muhlbauer, S. I. Seher, C. Zollner, S. Lorenz, D. Bruggenmann, U. Nieken, N. P. Ivleva, and R. Niessner(2016), Reactivity and structure of soot generated at varying biofuel content and engine operating parameters, Combusion and Flame, Vol. 163, pp. 157-169. https://doi.org/10.1016/j.combustflame.2015.09.016
  4. Eyring, V., H. W. Kohler, J. Van Aardenne, and A. Lauer(2005), Emissions from international shipping: 1. The last 50 years, Journal of Geophysical Research, Vol. 100, No. D17.
  5. Ferrari, A. C. and J. Robertson(2004), Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Pilosophical Transactions of the Royal Society A, Vol. 362, No. 1824, pp. 2477-2512. https://doi.org/10.1098/rsta.2004.1452
  6. IMO MEPC. Strategic plan for the organization for the six-year period 2018 to 2023(2017), MEPC Resolution A.1110(30).
  7. Kim, S. Y.(2020), A comparison study on structural characteristic of exhaust soot and crankcase soot for marine diesel engine, Korea maritime & ocean university graduate dissertation.
  8. Lee, W. J.(2017), A study on recycling the waste soot produced from marine diesel engines, Journal of the Korean Society of Marine Engineering, Vol. 41, No. 6, pp. 543-548.
  9. Lee, W. J., H. V. Kim, J. H. Choi, G. Panomsuwan, Y. C. Lee, B. S. Rho, and J. Kang(2018), Recycling waste soot from merchant ships to produce anode materials for rechargeable lithium-ion batteries, Scientific Reports, Vol. 8, p. 5601. https://doi.org/10.1038/s41598-018-23945-8
  10. Lespade, P., A. Marchand, M. Couzi, and F. Cruege(1984), Caracterisation de materiaux carbones par microspectrometrie raman, Carbon, Vol. 22, No. 4-5, pp. 375-385. https://doi.org/10.1016/0008-6223(84)90009-5
  11. Park, S. H., J. H. Lee, Y. K. Kim, E. S. Sim, and H. D. Yang(2011), HRTEM Image Analysis Technique of Carbon Nanostructure of Soot Collected under Microgravity Conditions, KOSCO Journal, 42.
  12. Sharma, V., D. Uy, A. Gangopadhyay, A. O'Neill, W. A. Paxton, A. Sammut, M. A. Ford, and P. B. Aswath(2016), Structure and chemistry of crankcase and exhaust soot extracted from diesel engines, Carbon, Vol. 103, pp. 327-338. https://doi.org/10.1016/j.carbon.2016.03.024
  13. Vander Wal, R. L. and A. J. Tomaskek(2004), Soot nanostructure: Dependence upon synthesis conditions, Combustion and Flame, Vol. 136, No. 1-2, pp. 129-140. https://doi.org/10.1016/j.combustflame.2003.09.008