DOI QR코드

DOI QR Code

Trend Analysis of Earthquake Researches in the World

전세계의 지진 연구의 추세 분석

  • Yun, Sul-Min (BK21 School of Earth and Environmental Systems, Department of Geological Sciences, Pusan National University) ;
  • Hamm, Se-Yeong (Department of Geological Sciences, Pusan National University) ;
  • Jeon, Hang-Tak (Department of Geological Sciences, Pusan National University) ;
  • Cheong, Jae-Yeol (Korea Radioactive Waste Agency)
  • 윤설민 (부산대학교 BK21지구환경시스템 교육연구단 지질환경과학과) ;
  • 함세영 (부산대학교 지질환경과학과) ;
  • 전항탁 (부산대학교 지질환경과학과) ;
  • 정재열 (한국원자력환경공단)
  • Received : 2021.02.04
  • Accepted : 2021.02.19
  • Published : 2021.02.28

Abstract

In this study, temporal trend of researches in earthquake with groundwater level, water quality, radon, remote sensing, electrical resistivity, gravity, and geomagnetism was searched from 2001 to 2020, using the journals indexed in Web of Science, and the number of articles published in international journals was counted in relation to the occurrences of earthquakes (≥Mw 5.0, ≥Mw 6.0, ≥Mw 7.0, ≥Mw 8.0, and ≥Mw 9.0). The number of articles shows an increasing trend over the studied period. This is explained by that studies on earthquake precursor and seismic monitoring becomes active in various fields with integrated data analysis through the development of remote sensing technology, progress of measurement equipment, and big data. According to Mann-Kendall and Sen's tests, gravity-related articles exhibit an increasing trend of 1.30 articles/yr, radon-related articles (0.60 articles/yr), groundwater-related articles (0.70 articles/yr), electrical resistivity-related articles (0.25 articles/yr), and remote-sensing-related articles (0.67 articles/yr). By cross-correlation analysis of the number of articles in each field with removing trend effect and the number of earthquakes of ≥Mw 5.0, ≥Mw 6.0, ≥Mw 7.0, ≥Mw 8.0, and ≥Mw 9.0, radon and remote sensing fields exhibit a high cross-correlation with a delay time of one year. In addition, large-scale earthquakes such as the 2004 and 2005 Sumatra earthquake, the 2008 Sichuan earthquake, the 2010 Haiti earthquake, and the 2010 Chile earthquake are estimated to be related with the increase in the number of articles in the corresponding periods.

본 연구에서는 2001년부터 2020년까지 지진과 관련된 지하수위, 수질, 라돈, 원격탐사, 전기비저항, 중력, 지자기 분야의 세계적으로 학술지에 게재된 논문 편수를 Web of Science에서 검색하여 그 경향성을 분석하였다. 그리고 논문 편수와 Mw 5.0 이상, Mw 6.0 이상, Mw 7.0 이상, Mw 8.0 이상, Mw 9.0 이상 지진 발생 건수를 비교 분석하였다. 지진과 관련한 중력, 라돈, 지하수(지하수위, 수질), 전기비저항, 지자기분야 논문 편수는 장기적으로 증가하는 추세를 보인다. 이는 원격탐사 기술의 발달, 측정 장비의 고도화, 빅데이터 분석 등을 통한 종합적인 자료 해석이 가능해지면서 여러 분야에서 지진 전조 및 지진 현상 연구가 활발해지고 있기 때문이다. Mann-Kendall과 Sen 추세 검정에 의하면, 중력 관련 논문의 경우 1.30편/년의 증가추세를 보이고, 라돈 0.60편/년, 지하수 0.70편/년, 전기비저항 0.25편/년, 원격탐사 0.67편/년의 증가추세를 보인다. Mw 5.0 이상, Mw 6.0 이상, Mw 7.0 이상, Mw 8.0 이상, Mw 9.0 이상의 지진발생 건수와 경향성을 제거한 분야별 논문 편수 간의 교차상관분석에 의하면, 라돈과 원격탐사 분야의 교차상관성이 높으며, 지연시간은 1년이다. 또한 2004년과 2005년 수마트라 지진, 2008년 쓰촨성 지진, 2010년 아이티 지진, 2010 칠레 지진 등의 큰 규모의 지진 발생이 논문 편수 증가와 관련되는 것으로 추정된다.

Keywords

Acknowledgement

이 연구는 과학기술정보통신부의 한국연구재단 중견연구사업(No. NRF-2020R1A2B5B02002198)과 행정안전부의 지진방재분야 전문인력 양성사업의 지원으로 수행되었으며, 이에 감사드립니다.

References

  1. Charmoille, A., Fabbri, O., Mudry, J., Guglielmi, Y. and Bertrand, G., 2005, Post-seismic permeability changes in a shallow fractured aquifer following a ML 5.1 earthquake (Fourbanne karst aquifer, Jura outermost thrust unit, eastern France). Geophysical Research Letters, 32, L18406. https://doi.org/10.1029/2005GL023859
  2. Che, Y., Yu, J., Zhang, D., Sun, Z.A., Jian, C. and Peng, G., 1994, Annual regime characteristics of water level in bedrock wells in Beijing plain. Seismology & Geology, 16(3), 255-363.
  3. Chen, C.H., Wang, C.H., Liu, J.Y., Liu, C., Liang, W.T., Yen, H.Y., Yeh, Y.H., Chia, Y.P. and Wang, Y., 2010 Identification of earthquake signals from groundwater level records using HHT method. Geophysical Journal International, 180, 1231-1241, doi:10.1111/j.1365-246X.2009.04473.x.
  4. Cheong, J.Y., Hamm, S.Y., Kim, S.H., Lee, S.H., Woo, N.C. and Kim, G.B., 2013, Analyzing groundwater change on a volcanic island caused by the impact of the M9 Sumatra earthquake. Geosciences Journal, 17(2), 183-195. https://doi.org/10.1007/s12303-013-0012-4
  5. De Santis, A., Marchetti, D., Pavon-Carrasco, F.J., Cianchinim G., Perrone, L., Abbattista, C., Alfonsi, L., Amoruso, L., Campuzano, S.A., Carbone, M., Cesaroni, C., De Franceschi, G., De Santis, A., Di Giovambattista, R., Ippolito, A., Piscini, A., Sabbagh, D., Soldani, M., Santoro, F., Spogil, L. and Haagmans, R., 2019, Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Scientific Reports, 9:20287, 10.1038/s41598-019-56599-1.
  6. Dea, J.Y., Hansen, P.M. and Boerner, W.M., 1993, Long-term ELF background noise measurements, the existence of window regions, and applications to earthquake precursor emission studies. Physics of the Earth and Planetary Interiors, 77, 109-125. https://doi.org/10.1016/0031-9201(93)90037-A
  7. Fraser-Smith, A.C., Bernardi, A., McGill, P.R., Ladd, M.E., Helliwell, R.A. and Villard Jr., O.G., 1990, Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake. Geophysical Research Letters, 17, 1465-1468. https://doi.org/10.1029/GL017i009p01465
  8. Geller, R.J., 1997, Earthquake prediction: a critical review, Geophysical Journal International, 131(3), 425-450. https://doi.org/10.1111/j.1365-246X.1997.tb06588.x
  9. Geng, J., Zhang, Z., Wei, H. and Wang, Z., 1998, Dynamic pattern of groundwater level before and after the Tangshan earthquake and its mode of formation and evolution. Dizhen Dizhi, 20(3), 255-260.
  10. Ha, J.C. and Song, Y.J., 2015, An investigation of awareness on the Fukushima nuclear accident and radioactive contamination. Journal of Radiation Protection and Research, 41, 7-14. https://doi.org/10.14407/jrpr.2016.41.1.007
  11. Hong, S.H., Jang, M.J., Jung, S.W. and Park, S.W., 2018 A Review on Monitoring Mt. Baekdu Volcano Using Space-based Remote Sensing Observations. Korean Journal of Remote Sensing, 34(6), 1503-1517.
  12. Hwang, H.S., Hamm, S.Y., Cheong, J.Y., Lee, S.H., Ha, K.C., Lee, C.W., Woo N.C., Yun S.M. and Kim, K.H., 2020, Effective time-and frequency-domain techniques for interpreting seismic precursors in groundwater level fluctuations on Jeju Island, Korea. Scientific Reports, 10(1), 1-14. https://doi.org/10.1038/s41598-019-56847-4
  13. Ingebristen, S.E. and Manga, M., 2014, Earthquakes: Hydrogeochemical precursors. Nature Geoscience, 7, 697-698. https://doi.org/10.1038/ngeo2261
  14. Jeong, C.H., Park, J.S., Lee, Y.C., Lee Y.J., Yang, J.H., Kim, Y.S. and Ou, S.M., 2018, Relationship of Radon-222 and Chemical Composition of Groundwater as a Precursor of Earthquake. The Journal of Engineering Geology, 28(2), 313-324. https://doi.org/10.9720/KSEG.2018.2.313
  15. Kendall, M.G., 1975, Rank Correlation Methods, 4th edition. Charles Griffin, London.
  16. Korea Meteorological Administration, 2011, A study on the evaluation of earthquake-precognition cases and the feasibility to develop monitoring systems to observe earthquake precursors.
  17. Kuo, T., Fan, K., Kuochen, H., Han, Y., Chu, H. and Lee, Y., 2006, Anomalous decrease in groundwater radon before the Taiwan M6. 8 Chengkung earthquake. Journal of environmental radioactivity, 88(1), 101-106. https://doi.org/10.1016/j.jenvrad.2006.01.005
  18. Lee, D.S., Choi, S.C., Oh, C.W., Seo, M.H. and Ryu, I.C., 2013, The Study on the Possibility of Using Satellite in Monitoring Precursor of Magma Activity in the Baegdusan Volcano. The Journal of the Petrological Society of Korea, 22(1), 35-47. https://doi.org/10.7854/JPSK.2013.22.1.035
  19. Lee, H.A. and Woo, N.C., 2012, Influence of the M9.0 Tohoku Earthquake on groundwater in Korea. Geosciences Journal, 16(1), 1-6. https://doi.org/10.1007/s12303-012-0010-y
  20. Lee, H.A., 2013, Investigation of Groundwater Response to Earthquakes using the National Groundwater Monitoring Data of Korea. Doctoral dissertation, Yonsei University.
  21. Lee, H.A., Hamm, S.Y. and Woo, N.C., 2017, Groundwater Monitoring Network for Earthquake Surveillance and Prediction. Economic and Environmental Geology, 50, 401-414. https://doi.org/10.9719/EEG.2017.50.5.401
  22. Lee, H.A., Hamm, S.Y. and Woo, N.C., 2018, The Abnormal Groundwater Changes as Potential Precursors of 2016 ML5.8 Gyeongju Earthquake in Korea. Economic and Environmental Geology, 51, 393-400. https://doi.org/10.9719/EEG.2018.51.4.393
  23. Lee, H.A., Kim, M.H., Hong, T.K. and Woo, N.C., 2011, Earthquake observation through groundwater monitoring: A case of M4.9 Odaesan Earthquake. Journal of Soil and Groundwater Environment, 16(3), 38-47. https://doi.org/10.7857/JSGE.2011.16.3.038
  24. Lee, S.H., Cheong, J.Y., Park, Y.S., Ha, K., Kim, Y.C., Kim, S.W. and Hamm S.Y., 2017, Groundwater level changes on Jeju Island associated with the Kumamoto and Gyeongju earthquakes. Geomatics, Natural Hazards and Risk, 8, 1783-1791. https://doi.org/10.1080/19475705.2017.1387181
  25. Lee, S.H., Ha, K., Shin, J.S., Ko, K.S. and Hamm, S.Y., 2013, 2013, Successive groundwater level changes on Jeju Island due to the Mw 9.0 off the Pacific coast of Tohoku earthquake. Bulletin of the Seismological Society of America, 103, 2B, 1614-1621. https://doi.org/10.1785/0120120054
  26. Mann, H.B., 1945, Non-parametric tests against trend. Econometrica, 13, 163-171.
  27. Mao, Z., Chen, C. H., Zhang, S., Yisimayili, A., Yu, H., Yu, C. and Liu, J.Y., 2020, Locating seismoconductivity anomaly before the 2017 Mw 6.5 Jiuzhaigou earthquake in China using far magnetic stations. Remote Sensing, 12, 10.3390/rs12111777.
  28. Marchetti, D., De Santis, A., D'Arcangelo, S., Poggio, F., Jin, S., Piscini, A. and Campuzano, S.A., 2020, Magnetic field and electron density anomalies from Swarm satellites preceding the major earthquakes of the 2016-2017 Amatrice-Norcia (Central Italy) seismic sequence. Pure and Applied Geophysics, 177(1), 305-319. https://doi.org/10.1007/s00024-019-02138-y
  29. Mok, J.G., Lim, H.G., Jang, B.J., Park, Y.C. and Lee, J.Y., 2011, Time Series Analysis of the Effect of Groundsource Heat Pumps on Groundwater Characteristics. The Journal of Engineering Geology, 21(1), 35-43. https://doi.org/10.9720/kseg.2011.21.1.035
  30. Oh, S.H., 2009, Variation Analysis of Geomagnetic Data Observed Around the Event of Andong Earthquake (May 2, 2009). Journal of The Korean Earth Science Society, 30, 683-691. https://doi.org/10.5467/JKESS.2009.30.6.683
  31. Oh, Y.H. and Kim, G., 2015, A radon-thoron isotope pair as a reliable earthquake precursor. Scientific Reports, 5, 13084. https://doi.org/10.1038/srep13084
  32. Ohta, K., Izutsu, J., Chekotov, A. and Hayakawa, M., 2013, The ULF/ELF electromagnetic radiation before the 11 March 2011 Japanese earthquake, Radio Science, 48, 589-596. https://doi.org/10.1002/rds.20064
  33. Ok, S.I., Hamm, S.Y., Kim, B.S., Cheong, J.Y., Woo, N.C., Lee, S.H., Koh, G.W. and Park, Y.S., 2010, Characteristics of Aquifer System and Change of Groundwater Level due to Earthquake in the Western Half of Jeju Island. Economic and Environmental Geology, 43(4), 359-369.
  34. Qi, Y., Wu, L., He, M. and Mao, W., 2020, Spatio-temporally weighted two-step method for retrieving seismic MBT anomaly: May 2008 Wenchuan earthquake sequence being a case. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13.
  35. Qu, C., Shan, X., Zhang, G., Song, X. and Zhang, G., 2010, Coseismic displacement field of the Wenchuan Ms 8.0 earthquake in 2008 derived using differential radar interferometry. Journal of Applied Remote Sensing, 4(1), 043516. https://doi.org/10.1117/1.3386043
  36. Qu, W., Han, Y., Lu, Z., An, D., Zhang, Q. and Gao, Y., 2020, Co-Seismic and Post-Seismic Temporal and Spatial Gravity Changes of the 2010 Mw 8.8 Maule Chile Earthquake Observed by GRACE and GRACE Follow-on. Remote Sensing, 12(17), 2768. https://doi.org/10.3390/rs12172768
  37. Roeloffs, E., 2000, The Parkfield, California earthquake experiment: An update in 2000. Current Science, 79(9), 1226-1236.
  38. Sadovsky, M.A., Nersesov, I.L., Nigmatullaev, S.K., Latynina, L.A., Lukk, A.A., Semenov, A.N., Simbireva, I.G. and Ulomov, V.I., 1972, The processes preceding strong earthquakes in some regions of Middle Asia. Tectonophysics, 14(3/4), 295-307. https://doi.org/10.1016/0040-1951(72)90078-9
  39. Sen, P.K., 1968, Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63, 1379-1389. https://doi.org/10.1080/01621459.1968.10480934
  40. Shen, C., Li, H., Sun, S., Liu, S., Xuan, S. and Tan, H., 2009, Dynamic variations of gravity and the preparation process of the Wenchuan Ms8.0 earthquake. Chinese Journal of Geophysics, 52(10), 2547-2557. https://doi.org/10.3969/j.issn.0001-5733.2009.10.013
  41. Watanabe, M., Thapa, R.B., Ohsumi, T., Fujiwara, H., Yonezawa, C., Tomii, N. and Suzuki, S., 2016, Detection of damaged urban areas using interferometric SAR coherence change with PALSAR-2. Earth, Planets and Space, 68, 131, 10.1186/s40623-016-0513-2.
  42. Wongpornchai, P. and Suwanprasit, C., 2019, Feasibility study of thermal anomaly detection for earthquake: A case study from 2014 Mae Lao earthquake, Thailand. Earth and Environmental Science, 538, 1-8.
  43. Woo, N.C., Lee, J.M., Lee, C.J., Kang, I.O. and Choi, D.H., 2015, Abnormal Changes in Groundwater Monitoring Data Due to Small-Magnitude Earthquakes. The Journal of Engineering Geology, 25(1), 21-33. https://doi.org/10.9720/kseg.2015.1.21
  44. Yao, Q. L. and Qiang, Z. J., 2010, The elliptic stress thermal field prior to MS 7.3 Yutian, and MS 8.0 Wenchuan earthquakes in China in 2008. Natural Hazards, 54(2), 307-322. https://doi.org/10.1007/s11069-009-9470-4
  45. Yoshino, T., Tomizawa, I. and Sugimoto, T., 1993, Results of statistical analysis of low-frequency seismogenic EM emissions as precursors to earthquakes and volcanic eruptions. Physics of the Earth and Planetary Interiors, 77(1-2), 21-31. https://doi.org/10.1016/0031-9201(93)90031-4
  46. Yu, W., He, J., Lin, W., Li, Y., Men, W., Wang, F. and Huang, J., 2015, Distribution and risk assessment of radionuclides released by Fukushima nuclear accident at the Northwest Pacific. Journal of Environmental Radioactivity, 142, 54-61. https://doi.org/10.1016/j.jenvrad.2015.01.005
  47. Yun, S.M., Hamm, S.Y., Cheong, J.Y., Lee, C.M., Seo, W.S. and Woo, N.C., 2019, Analyzing groundwater level anomalies in a fault zone in Korea caused by local and offshore earthquakes. Geosciences Journal, 23(1), 137-148. https://doi.org/10.1007/s12303-018-0062-8
  48. Zhang, X., Zhang, Y., Tian, X., Zhang, Q. and Tian, J., 2017, Tracking of thermal infrared anomaly before one strong earthquake-In the case of Ms6.2 earthquake in Zadoi, Qinghai on October 17th, 2016. In Journal of Physics: Conference Series, 910(1), 012048 p. https://doi.org/10.1088/1742-6596/910/1/012048
  49. Zhang, Y., Chen, S., Xing, L., Liu, M. and He, Z., 2020, Gravity changes before and after the 2008 Mw 7.9 Wenchuan earthquake at Pixian absolute gravity station in more than a decade. Pure and Applied Geophysics, 177(1), 121-133. https://doi.org/10.1007/s00024-019-02356-4
  50. Zhima, Z., Hu, Y., Piersanti, M., Shen, X., De Santis, A., Yan, R., Yang, Y., Zhao, Z., Wang, Q., Huang, J. and Guo, F., 2020, The seismic electromagnetic emissions during the 2010 Mw 7.8 Northern Sumatra Earthquake revealed by DEMETER satellite. Frontiers in Earth Science, 8, 1-14. https://doi.org/10.3389/feart.2020.00001