DOI QR코드

DOI QR Code

Effect of suction on flow of dusty fluid along exponentially stretching cylinder

  • Iqbal, Waheed (Department of Mathematics, Govt. College University Faisalabad) ;
  • Jalil, Mudassar (Department of Mathematics, COMSATS Institute of Information Technology) ;
  • Qazaq, Amjad (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Naeem, Muhammad N. (Department of Mathematics, Govt. College University Faisalabad) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Mahmoud, S.R. (GRC Department, Faculty of Applied Studies, King Abdulaziz University) ;
  • Ghandourah, E. (Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • 투고 : 2020.09.12
  • 심사 : 2020.11.19
  • 발행 : 2021.03.25

초록

The present manuscript focuses the effects of suction on the flow of the dusty fluid along permeable exponentially stretching cylinder. Derived PDEs for this work are changed into ODEs by adopting right transformations. Numerical procedure is carried out for the obtained resultant equations by Shooting Technique in accordance with Runge-Kutta (RK-6) technique. Obtained results for the parameters namely, particle interaction parameter, suction parameter and Reynold number parameters are probed thoroughly. Some salient points are: (a) Fluid velocity decreases and the dust phase velocity rises for the higher values of particle interaction parameter; (b) more suction produces retarding velocities for both the phases; (c) high Reynold number slows down the fluid velocity while the speed of dust phase and (d) skin friction coefficient goes high for all these parameters.

키워드

과제정보

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under research project no. 2019/01/11299.

참고문헌

  1. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., Int. J., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
  2. Agranat, V.M. (1988), "Effect of pressure gradient on friction and heat transfer in a dusty boundary layer", Fluid Dyn., 23, 729-732. http://dx.doi.org/10.1007/BF02614150.
  3. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., Int. J., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
  4. Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stab. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
  5. Akbas, S.D. (2017b), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
  6. Akbas, S.D. (2018a), "Large deflection analysis of a fiber reinforced composite beam", Steel Compos. Struct., Int. J., 27(5), 567-576. https://doi.org/10.12989/scs.2018.27.5.567.
  7. Akbas, S.D. (2018b), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., Int. J., 66(1), 27-36. https://doi.org/10.12989/sem.2018.66.1.027.
  8. Akbas, S.D. (2018c), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., Int. J., 26(6), 733-743. https://doi.org/10.12989/scs.2018.26.6.733.
  9. Akbas, S.D. (2018c), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., Int. J., 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337.
  10. Akbas, S.D. (2018d), "Nonlinear thermal displacements of laminated composite beams", Coupled Syst. Mech., 7(6), 691-705. https://doi.org/10.12989/csm.2018.7.6.691.
  11. Akbas, S.D. (2019a), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., Int. J., 72(4), 433-441. https://doi.org/10.12989/sem.2019.72.4.433.
  12. Akbas, S.D. (2019b), "Post-buckling analysis of a fiber reinforced composite beam with crack", Eng. Fract. Mech., 212, 70-80. https://doi.org/10.1016/j.engfracmech.2019.03.007.
  13. Akbas, S.D. (2019c), "Hygrothermal post-buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(1), 1950009. https://doi.org/10.1142/S1758825119500091.
  14. Akbas, S.D. (2019d), "Forced vibration analysis of functionally graded sandwich deep beams", Coupled Syst. Mech., 8(3), 259-271. https://doi.org/10.12989/csm.2019.8.3.259.
  15. Akbas, S.D. (2020a), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., Int. J., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
  16. Akbas, S.D. (2020b), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., Int. J., 8(4), 277-282. http://dx.doi.org/10.12989/anr.2020.8.4.277.
  17. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., Int. J., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.
  18. Al-Maliki, A.F., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Des., Int. J., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
  19. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  20. Baaskaran, N., Ponappa, K. and Shankar, S. (2018), "Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load", Steel Compos. Struct., Int. J., 28(2), 179-194. https://doi.org/10.12989/scs.2018.28.2.179.
  21. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., Int. J., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  22. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-Ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., Int. J., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
  23. Chakrabarti, K.M. (1974), "Note on boundary layer in a dusty gas", Am. Inst. Aero. Astro. J., 12, 1136-1137. http://dx.doi.org/10.2514/3.49427.
  24. Chen, J., Zhuang, Y., Fang, H., Liu, W., Zhu, L. and Fan, Z. (2019a), "Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading", Steel Compos. Struct., Int. J., 31(2), 133-148. https://doi.org/10.12989/scs.2019.31.2.133.
  25. Chen, W., Ji, C., Alam, M.M. and Xu, D. (2019b), "Flow-induced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow", Wind Struct., Int. J., 29(1), 43-53. https://doi.org/10.12989/was.2019.29.1.043.
  26. Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030.
  27. Derakhshandeh, J.F. and Alam, M.M. (2020), "Reynolds number effect on the flow past two tandem cylinders", Wind Struct., Int. J., 30(5), 475-483. https://doi.org/10.12989/was.2020.30.5.475.
  28. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., Int. J., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
  29. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., Int. J., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
  30. Imtiaz, M., Hayat, T. and Alsaedi, A. (2016), "MHD convective flow of Jeffrey fluid due to a curved stretching surface with homogeneous-heterogeneous reactions", PLoS One, 11(9), e0161641. https://doi.org/10.1371/journal.pone.0161641.
  31. Iqbal, W., Naeem, M.N. and Jalil, M. (2019), "Numerical analysis of Williamson fluid flow along an exponentially stretching cylinder", AIP Adv., 9(5), 055118. http://dx.doi.org/10.1063/1.5092737.
  32. Ishak, A. and Nazar, R. (2009), "Laminar boundary layer flow along a stretching cylinder", Eur. J. Sci. Res., 36(1), 22-29. https://doi.org/10.5897/IJPS12.093.
  33. Ishak, A., Nazar, R. and Pop, I. (2008), "Uniform suction/ blowing effect on flow and heat transfer due to stretching cylinder", App. Math. Mod., 32, 2059-2066. http://dx.doi.org/10.1016/j.apm.2007.06.036.
  34. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
  35. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
  36. Khan, M. and Malik, R. (2015), "Forced convective heat transfer to Sisko fluid flow past a stretching cylinder", AIP Adv., 5(12), 127202. http://dx.doi.org/10.1063/1.4937346.
  37. Konch, J. and Hazarika, G.C. (2017), "Unsteady hydro magnetic flow of dusty fluid over a stretching cylinder with variable viscosity and thermal conductivity", Int. J. Adv. Sci. Tech., 99, 57-70. http://dx.doi.org/10.14257/ijast.2017.99.05.
  38. lmtiaz, M., Hayat, T. and Alsaedi, A. (2016), "Mixed convection flow of Casson nanofluid over a stretching cylinder with convective boundary conditions", Adv. Power Tech., 27(5), 2245-2256. https://doi.org/10.1016.j.apt.2016.08.011. https://doi.org/10.1016.j.apt.2016.08.011
  39. Loghman, A., Faegh, R.K. and Arefi, M. (2018), "Two-dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory", Steel Compos. Struct., Int. J., 26(5), 533-547. https://doi.org/10.12989/scs.2018.26.5.533.
  40. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  41. Mahdy, A. (2015), "Heat transfer and flow of a Casson fluid due to a stretching cylinder with the soret and dufour effects", J. Eng. Phys. Therm., 88(4), 928-936. https://doi.org/10.1007/s10891-015-1267-6.
  42. Malik, M.Y., Naseer, M., Nadeem, S. and Rehman, A. (2013), "The boundary layer flow of Casson nanofluid over an exponentially stretching cylinder", Appl. Nanosci., 4, 869-873. https://doi.org/10.1007/s13204-013-0267-0.
  43. Malik, M.Y., Hussain, A., Salahuddin., T., Awais, M., Bilal, S. and Khan, F. (2016), "Flow of Sisko fluid over a stretching cylinder and heat transfer with viscous dissipation and variable thermal conductivity: A numerical study", AIP Adv., 6(4), 045118. https://doi.org/10.1063/1.4948458.
  44. Moghaddam, S.H. and Masoodi, A.R. (2019), "Elastoplastic nonlinear behavior of planar steel gabled frame", Adv. Comput. Des., Int. J., 4(4), 397-413. https://doi.org/10.12989/acd.2019.4.4.397.
  45. Naseer, M., Malik, M.Y., Nadeem, S. and Rehman, A. (2014), "The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder", Alexandria Eng. J., 53, 747-750. https://doi.org/10.1016/j.aej.2014.05.001.
  46. Nath, G. (1970), "Dusty viscous-fluid flow between rotating coaxial cylinders", Proc. National Ac. Sci. India Sec. A Phys. Sci., 40(3), 257.
  47. Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2020), "Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model", Steel Compos. Struct., Int. J., 35(1), 77-92. https://doi.org/10.12989/scs.2020.35.1.077.
  48. Rasekh, A., Ganji, D.D., Tavakoli, S., Ehsani, H. and Naeejee, S. (2014), "MHD flow and heat transfer of dusty fluid over a stretching hollow cylinder with a convective boundary conditions", Heat Trans. Asian Res., 43(3), 221-232. https://doi.org/10.1002/htj.21073.
  49. Rebhi, A.D. (2010), "On boundary layer flow of dusty gas from a horizontal circular cylinder", Braz. J. Chem. Eng., 27(4), 653-662. http://dx.doi.org/10.1590/S0104-66322010000400017.
  50. Rehman, A. (2015), "Boundary layer flow and heat transfer of micropolar fluid over a vertical exponentially stretching cylinder", Appl. Comput. Math., 4(6), 424-430. http://dx.doi.org/10.11648/j.acm.20150406.15.
  51. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., Int. J., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  52. Saffman, P.G. (1962), "On the stability of laminar flow of a dusty gas", J. Fluid Mech., 13, 120-128. https://doi.org/10.1017/S0022112062000555.
  53. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., Int. J., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  54. Salahuddin, T., Malik, M.Y., Hussain, A., Awais, M. and Bilal, S. (2017), "Mixed convection boundary layer flow of Williamson fluid with slip conditions over a stretching cylinder by using Keller-box method", Int. J. Nonlin. Sci. Num. Simul., 18(1), 9-17. https://doi.org/10.1515/ijnsns.2015.0090.
  55. Shadravan, S., Ramseyer, C.C. and Floyd, R.W. (2019), "Comparison of structural foam sheathing and oriented strand board panels of shear walls under lateral load", Adv. Comput. Des., Int. J., 4(3), 251-272. https://doi.org/10.12989/acd.2019.4.3.251.
  56. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., Int. J., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  57. Sharma, N. and Panda, S.K. (2020), "Multiphysical numerical (FE-BE) solution of sound radiation responses of laminated sandwich shell panel including curvature effect", Comput. Math. Appl., 80(5), 1221-1239. https://doi.org/10.1016/j.camwa.2020.06.010.
  58. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2017a), "Vibro-acoustic behaviour of shear deformable laminated composite flat panel using BEM and the higher order shear deformation theory", Compos. Struct., 180, 116-129. https://doi.org/10.1016/j.compstruct.2017.08.012.
  59. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2017b), "Numerical study of vibro-acoustic responses of un-baffled multi-layered composite structure under various end conditions and experimental validation", Latin Am. J. Solids Struct., 14(8), 1547-1568. https://doi.org/10.1590/1679-78253830.
  60. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2017c), "Vibro-acoustic analysis of un-baffled curved composite panels with experimental validation", Struct. Eng. Mech., Int. J., 64(1), 93-107. https://doi.org/10.12989/sem.2017.64.1.093.
  61. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018a), "Numerical analysis of acoustic radiation responses of shear deformable laminated composite shell panel in hygrothermal environment", J. Sound Vib., 431, 346-366. https://doi.org/10.1016/j.jsv.2018.06.007.
  62. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018b), "Numerical analysis of acoustic radiation properties of laminated composite flat panel in thermal environment: A higher-order finite-boundary element approach", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 232(18), 3235-3249. https://doi.org/10.1177/0954406217735866.
  63. Sharma, N., Mahapatra, T.R., Panda, S.K. and Hirwani, C.K. (2018c), "Acoustic radiation and frequency response of higher-order shear deformable multilayered composite doubly curved shell panel-an experimental validation", Appl. Acoust., 133, 38-51. https://doi.org/10.1016/j.apacoust.2017.12.013.
  64. Sharma, N., Mahapatra, T.R., Panda, S.K. and Mehar, K. (2018d), "Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model", Steel Compos. Struct., Int. J., 28(5), 629-639. https://doi.org/10.12989/scs.2018.28.5.629.
  65. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018e), "Thermoacoustic behavior of laminated composite curved panels using higher-order finite-boundary element model", Int. J. Appl. Mech., 10(2), 1850017. https://doi.org/10.1142/S1758825118500175.
  66. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019a), "Hygrothermal effect on vibroacoustic behaviour of higher-order sandwich panel structure with laminated composite face sheets", Eng. Struct., 197, 109355. https://doi.org/10.1016/j.engstruct.2019.109355.
  67. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019b), "Vibroacoustic analysis of thermo-elastic laminated composite sandwich curved panel: A higher-order FEM-BEM approach", Int. J. Mech. Mater. Des., 15(2), 271-289. https://doi.org/10.1007/s10999-018-9426-5.
  68. Sharma, N., Mahapatra, T.R., Panda, S.K. and Katariya, P. (2020), "Thermo-acoustic analysis of higher-order shear deformable laminated composite sandwich flat panel", J. Sandw. Struct. Mater., 22(5), 1357-1385. https://doi.org/10.1177/1099636218784846.
  69. Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., Int. J., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
  70. Sofiyev, A.H., Yucel, K., Avcar, M. and Zerin, Z. (2006), "The dynamic stability of orthotropic cylindrical shells with nonhomogenous material properties under axial compressive load varying as a parabolic function of time", J. Reinf. Plast. Compos., 25(18), 1877-1886. https://doi.org/10.1177/0731684406069914.
  71. Wang, C.Y. (1988), "Fluid flow due to a stretching cylinder", Phys. Fluids, 31, 466-468. https://doi.org/10.1063/1.866827.
  72. Wang, C.Y. and Ng, C.O. (2011), "Slip flow due to a stretching cylinder", Int. J. Nonlin. Mech., 46, 1191-1194. https://doi.org/10.1016/j.ijnonlinmec.2011.05.04.
  73. Yuksel, Y.Z. and Akbas, S.D. (2019), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Comput. Appl. Mech., 50(2), 375-380. https://doi.org/10.22059/JCAMECH.2019.291967.448.