과제정보
The authors would like to thank the reviewers for their valuable comments and suggestions to improve the clarity of this study.
참고문헌
- Ait Atmane, H., Tounsi, A. and Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x.
- Ajayan, P.M. and Zhou, O.Z. (2001), Carbon Nanotubes, Springer Berlin, Germany. https://doi.org/10.1007/3-540-39947-X_14.
- Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
- Alibeigloo, A. (2013), "Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity", Compos. Struct., 95, 612-622. https://doi.org/10.1016/j.compstruct.2012.08.018.
- Amir, S., Arshid, E. and Ghorbanpour Arani, M.R. (2019), "Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads", Smart Struct. Syst., Int. J., 23(5), 429-447. https://doi.org/10.12989/sss.2019.23.5.429.
- Anumandla, V. and Gibson, R.F. (2006), "A comprehensive closed form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites", Compos. Part A Appl. Sci. Manuf., 37(12), 2178-2185. https://doi.org/10.1016/J.COMPOSITESA.2005.09.016.
- Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin-Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007.
- Arshid, E., Khorshidvand, A.R. and Khorsandijou, S.M. (2019a), "The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT", Struct. Eng. Mech., Int. J., 70(1), 97-112. https://dx.doi.org/10.12989/sem.2019.70.1.097.
- Arshid, E., Kiani, A. and Amir, S. (2019b), "Magneto-electro-elastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 233(10), 2140-1259. https://doi.org/10.1177/1464420719832626.
- Arshid, E., Amir, S. and Loghman, A. (2020a), "Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT", Int. J. Mech. Sci., 180, 105656. https://doi.org/10.1016/j.ijmecsci.2020.105656.
- Arshid, E., Amir, S. and Loghman, A. (2020b), "Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers", J. Sandw. Struct. Mater., 2016, 109963622095502. https://doi.org/10.1177/1099636220955027.
- Barati, M.R. and Zenkour, A.M. (2017), "Investigating post-buckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions", Compos. Struct., 182, 91-98. https://doi.org/10.1016/J.COMPSTRUCT.2017.09.008.
- Bendaho, B., Belabed, Z., Bourada, M., Benatta, M.A., Bourada, F. and Tounsi, A. (2019), "Assessment of new 2D and quasi-3D Nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates", Adv. Nano Res., Int. J., 7(4), 277-292. https://doi.org/10.12989/anr.2019.7.4.277.
- Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., Int. J., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
- Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
- Bui, T.Q., Nguyen, M.N. and Zhang, C. (2011), "An efficient meshfree method for vibration analysis of laminated composite plates", Computat. Mech., 48(2), 175-193. https://doi.org/10.1007/s00466-011-0591-8.
- Bui, T.Q., Khosravifard, A., Zhang, C., Hematiyan, M.R. and Golub, M.V. (2013), "Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method", Eng. Struct., 47, 90-104. https://doi.org/10.1016/j.engstruct.2012.03.041.
- Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/J.COMPSTRUCT.2015.07.052.
- Dan, M., Pagani, A. and Carrera, E. (2016), "Free vibration analysis of simply supported beams with solid and thin-walled cross-sections using higher-order theories based on displacement variables", Thin-Wall. Struct., 98, 478-495. https://doi.org/10.1016/J.TWS.2015.10.012.
- Detournay, E. and Cheng, A.H.D. (1993), "Fundamentals of Poroelasticity", Analysis Des. Methods, 113-171. https://doi.org/10.1016/B978-0-08-040615-2.50011-3.
- Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P. and Thanh, N.V. (2017), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG-CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations", Thin-Wall. Struct., 115, 300-310. https://doi.org/10.1016/J.TWS.2017.02.016.
- Ebrahimi, F. and Mokhtari, M. (2015), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Braz. Soc. Mech. Sci. Eng., 37(4), 1435-1444. https://doi.org/10.1007/s40430-014-0255-7.
- Ebrahimi, F. and Jafari, A. (2016), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., Int. J., 59(2), 343-371. https://dx.doi.org/10.12989/sem.2016.59.2.343.
- Ebrahimi, F. and Barati, M.R. (2017), "Size-dependent vibration analysis of viscoelastic nanocrystalline silicon nanobeams with porosities based on a higher order refined beam theory", Compos. Struct., 166, 256-267. https://doi.org/10.1016/J.COMPSTRUCT.2017.01.036.
- Ebrahimi, F., Jafari, A. and Barati, M.R. (2017), "Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations", Thin-Wall. Struct., 119, 33-46. https://doi.org/10.1016/J.TWS.2017.04.002.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Eringen, A.C. (2002). Nonlocal Continuum Field Theories, Springer Science & Business Media, USA.
- Fang, W., Yu, T., Van Lich, L. and Bui, T.Q. (2019), "Analysis of thick porous beams by a quasi-3D theory and isogeometric analysis", Compos. Struct., 221, 110890. https://doi.org/10.1016/j.compstruct.2019.04.062.
- Ghorbanpour Arani, A. and Haghparast, E. (2017), "Size-dependent vibration of axially moving viscoelastic micro-plates based on sinusoidal shear deformation theory", Int. J. Appl. Mech., 9(2), 1750026. https://doi.org/10.1142/S1758825117500260.
- Ghorbanpour Arani, A., BabaAkbar-Zarei, H., Pourmousa, P. and Eskandari, M. (2018), "Investigation of free vibration response of smart sandwich micro-beam on Winkler-Pasternak substrate exposed to multi physical fields", Microsyst. Technol., 24(7), 3045-3060. https://doi.org/10.1007/s00542-017-3681-5.
- Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Addabedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four-variable refined plate theory", Appl. Math. Mech., 32(7), 925-942. https://doi.org/10.1007/s10483-011-1470-9.
- Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/J.COMMATSCI.2006.06.011.
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56. https://doi.org/10.1038/354056a0.
- Jafari, A. and Ezzati, M. (2017), "Investigating the non-classical boundary conditions relevant to strain gradient theories", Physica E Low Dimens. Syst. Nanostruct., 86, 88-102. https://doi.org/10.1016/J.PHYSE.2016.09.012.
- Jafari, A., Shirvani Shah-enayati, S. and Atai, A.A. (2016), "Size dependency in vibration analysis of nano plates; one problem, different answers", Eur. J. Mech. A/Solids, 59, 124-139. https://doi.org/10.1016/J.EUROMECHSOL.2016.03.011.
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/J.MATDES.2016.12.061.
- Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/J.COMPSTRUCT.2012.11.006.
- Liu, Y.P. and Reddy, J.N. (2011), "A nonlocal curved beam model based on a modified couple stress theory", Int. J. Struct. Stab. Dyn., 11(3), 495-512. https://doi.org/10.1142/s0219455411004233.
- Liu, P. and Chen, G.F. (2014), Porous Materials: Processing and Applications. Elsevier, New York, USA.
- Liu, S., Yu, T. and Bui, T.Q. (2017), "Size effects of functionally graded moderately thick microplates: A novel non-classical simple-FSDT isogeometric analysis", Eur. J. Mech. A/Solids, 66, 446-458. https://doi.org/10.1016/j.euromechsol.2017.08.008.
- Liu, S., Yu, T., Van Lich, L., Yin, S. and Bui, T.Q. (2018), "Size effect on cracked functional composite micro-plates by an XIGA-based effective approach", Meccanica, 53(10), 2637-2658. https://doi.org/10.1007/s11012-018-0848-9.
- Liu, S., Yu, T., Lich, L.V., Yin, S. and Bui, T.Q. (2019), "Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis", Comput. Struct., 212, 173-187. https://doi.org/10.1016/j.compstruc.2018.10.009.
- Lunhui, G., Kazu, S. and Iijima, S. (2008), "Smallest carbon nanotube assigned with atomic resolution accuracy", Nano Lett., 8(2), 459-462. https://doi.org/10.1021/NL072396J.
- Magnucki, K. and Stasiewicz, P. (2004), "Elastic buckling of a porous beam", J. Theor. Appl. Mech., 42(4), 859-868.
- Malekzadeh, P. and Shojaee, M. (2013), "Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers", Thin-Wall. Struct., 71, 108-118. https://doi.org/10.1016/J.TWS.2013.05.008.
- McEvoy, M.A. and Correll, N. (2015), "Materials that couple sensing, actuation, computation, and communication", Science, 347(6228), 1261689. https://doi.org/10.1126/science.1261689.
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
- Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
- Mohammadimehr, M., Arshid, E., Alhosseini, S.M.A.R., Amir, S. and Arani, M.R.G. (2019), "Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation", Struct. Eng. Mech., Int. J., 70(6), 683-702. https://doi.org/10.12989/sem.2019.70.6.683.
- Pagani, A., Boscolo, M., Banerjee, J.R. and Carrera, E. (2013), "Exact dynamic stiffness elements based on one-dimensional higher-order theories for free vibration analysis of solid and thin-walled structures", J. Sound Vib., 332(23), 6104-6127. https://doi.org/10.1016/j.jsv.2013.06.023.
- Panah, M., Khorshidvand, A.R., Khorsandijou, S.M. and Jabbari, M. (2019), "Pore pressure and porosity effects on bending and thermal postbuckling behavior of FG saturated porous circular plates", J. Therm. Stresses, 2019, 1-27. https://doi.org/10.1080/01495739.2019.1614502.
- Shafiei, N. and Kazemi, M. (2017), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/J.COMPSTRUCT.2017.07.045.
- Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., Int. J., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
- Shen, H.S. (2011), "Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, part I: Axially-loaded shells", Compos. Struct., 93(8), 2096-2108. https://doi.org/10.1016/j.compstruct.2011.02.011.
- Shen, H.S. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells", Compos. Part B: Eng., 43(3), 1030-1038. https://doi.org/10.1016/J.COMPOSITESB.2011.10.004.
- Sobhy, M. and Zenkour, A.M. (2018), "Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams with CNT reinforced face sheets on a viscoelastic substrate", Compos. Part B Eng., 154, 492-506. https://doi.org/10.1016/J.COMPOSITESB.2018.09.011.
- Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
- Thostenson, E.T. and Chou, T.W. (2003), "On the elastic properties of carbon nanotube-based composites: Modelling and characterization", J. Phys. D Appl. Phys., 36(5), 573. https://doi.org/10.1088/0022-3727/36/5/323.
- Von Terzaghi, K. (1923), "Die Berechnug der Durchlassigkeit des Tones aus dem Verlauf der hydromechanischen Spannungserscheinungen", Sitzungsber. Akad. Wiss. Math. Naturwiss. Kl., Abt. Iia, 132, 125-138.
- Wattanasakulpong, N. and Ungbhakorn, V. (2012), "Free vibration analysis of functionally graded beams with general elastically end constraints by DTM", World J. Mech., 2(6), 297-310. https://doi.org/10.4236/wjm.2012.26036.
- Yu, T., Hu, H., Zhang, J. and Bui, T.Q. (2019a), "Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory", Thin-Wall. Struct., 138, 1-14. https://doi.org/10.1016/j.tws.2018.12.006.
- Yu, T., Zhang, J., Hu, H. and Bui, T.Q. (2019b), "A novel size-dependent quasi-3D isogeometric beam model for two-directional FG microbeams analysis", Compos. Struct., 211, 76-88. https://doi.org/10.1016/j.compstruct.2018.12.014.
- Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.