DOI QR코드

DOI QR Code

Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories

  • Mousavi, S. Behnam (Department of Mechanical Engineering, Sirjan University of Technology) ;
  • Amir, Saeed (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Jafari, Akbar (Department of Mechanical Engineering, Sirjan University of Technology) ;
  • Arshid, Ehsan (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2020.04.12
  • Accepted : 2020.12.18
  • Published : 2021.03.25

Abstract

In the current study, the free vibrational behavior of a Porous Micro (PM) beam which is integrated with Functionally Graded Piezoelectric (FGP) layers with initial curvature is considered based on the two trigonometric shear deformation theories namely SSDBT and Tan-SDBT. The structure's mechanical properties are varied through its thicknesses following the given functions. The curved microbeam is exposed to electro-mechanical preload and also is rested on a Pasternak type of elastic foundation. Hamilton's principle is used to extract the motion equations and the MCST is used to capture the size effect. Navier's solution method is selected as an analytical method to solve the motion equations for a simply supported ends case and by validating the results for a simpler state with previously published works, effects of different important parameters on the behavior of the structure are considered. It is found that although increasing the porosity reduces the natural frequency, but enhancing the volume fraction of CNTs increasing it. Also, by increasing the central angle of the curved beam the vibrations of the structure increases. Designing and manufacturing more efficient smart structures such as sensors and actuators are of the aims of this study.

Keywords

Acknowledgement

The authors would like to thank the reviewers for their valuable comments and suggestions to improve the clarity of this study.

References

  1. Ait Atmane, H., Tounsi, A. and Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x.
  2. Ajayan, P.M. and Zhou, O.Z. (2001), Carbon Nanotubes, Springer Berlin, Germany. https://doi.org/10.1007/3-540-39947-X_14.
  3. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
  4. Alibeigloo, A. (2013), "Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity", Compos. Struct., 95, 612-622. https://doi.org/10.1016/j.compstruct.2012.08.018.
  5. Amir, S., Arshid, E. and Ghorbanpour Arani, M.R. (2019), "Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads", Smart Struct. Syst., Int. J., 23(5), 429-447. https://doi.org/10.12989/sss.2019.23.5.429.
  6. Anumandla, V. and Gibson, R.F. (2006), "A comprehensive closed form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites", Compos. Part A Appl. Sci. Manuf., 37(12), 2178-2185. https://doi.org/10.1016/J.COMPOSITESA.2005.09.016.
  7. Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin-Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007.
  8. Arshid, E., Khorshidvand, A.R. and Khorsandijou, S.M. (2019a), "The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT", Struct. Eng. Mech., Int. J., 70(1), 97-112. https://dx.doi.org/10.12989/sem.2019.70.1.097.
  9. Arshid, E., Kiani, A. and Amir, S. (2019b), "Magneto-electro-elastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 233(10), 2140-1259. https://doi.org/10.1177/1464420719832626.
  10. Arshid, E., Amir, S. and Loghman, A. (2020a), "Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT", Int. J. Mech. Sci., 180, 105656. https://doi.org/10.1016/j.ijmecsci.2020.105656.
  11. Arshid, E., Amir, S. and Loghman, A. (2020b), "Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers", J. Sandw. Struct. Mater., 2016, 109963622095502. https://doi.org/10.1177/1099636220955027.
  12. Barati, M.R. and Zenkour, A.M. (2017), "Investigating post-buckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions", Compos. Struct., 182, 91-98. https://doi.org/10.1016/J.COMPSTRUCT.2017.09.008.
  13. Bendaho, B., Belabed, Z., Bourada, M., Benatta, M.A., Bourada, F. and Tounsi, A. (2019), "Assessment of new 2D and quasi-3D Nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates", Adv. Nano Res., Int. J., 7(4), 277-292. https://doi.org/10.12989/anr.2019.7.4.277.
  14. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., Int. J., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
  15. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  16. Bui, T.Q., Nguyen, M.N. and Zhang, C. (2011), "An efficient meshfree method for vibration analysis of laminated composite plates", Computat. Mech., 48(2), 175-193. https://doi.org/10.1007/s00466-011-0591-8.
  17. Bui, T.Q., Khosravifard, A., Zhang, C., Hematiyan, M.R. and Golub, M.V. (2013), "Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method", Eng. Struct., 47, 90-104. https://doi.org/10.1016/j.engstruct.2012.03.041.
  18. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/J.COMPSTRUCT.2015.07.052.
  19. Dan, M., Pagani, A. and Carrera, E. (2016), "Free vibration analysis of simply supported beams with solid and thin-walled cross-sections using higher-order theories based on displacement variables", Thin-Wall. Struct., 98, 478-495. https://doi.org/10.1016/J.TWS.2015.10.012.
  20. Detournay, E. and Cheng, A.H.D. (1993), "Fundamentals of Poroelasticity", Analysis Des. Methods, 113-171. https://doi.org/10.1016/B978-0-08-040615-2.50011-3.
  21. Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P. and Thanh, N.V. (2017), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG-CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations", Thin-Wall. Struct., 115, 300-310. https://doi.org/10.1016/J.TWS.2017.02.016.
  22. Ebrahimi, F. and Mokhtari, M. (2015), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Braz. Soc. Mech. Sci. Eng., 37(4), 1435-1444. https://doi.org/10.1007/s40430-014-0255-7.
  23. Ebrahimi, F. and Jafari, A. (2016), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., Int. J., 59(2), 343-371. https://dx.doi.org/10.12989/sem.2016.59.2.343.
  24. Ebrahimi, F. and Barati, M.R. (2017), "Size-dependent vibration analysis of viscoelastic nanocrystalline silicon nanobeams with porosities based on a higher order refined beam theory", Compos. Struct., 166, 256-267. https://doi.org/10.1016/J.COMPSTRUCT.2017.01.036.
  25. Ebrahimi, F., Jafari, A. and Barati, M.R. (2017), "Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations", Thin-Wall. Struct., 119, 33-46. https://doi.org/10.1016/J.TWS.2017.04.002.
  26. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  27. Eringen, A.C. (2002). Nonlocal Continuum Field Theories, Springer Science & Business Media, USA.
  28. Fang, W., Yu, T., Van Lich, L. and Bui, T.Q. (2019), "Analysis of thick porous beams by a quasi-3D theory and isogeometric analysis", Compos. Struct., 221, 110890. https://doi.org/10.1016/j.compstruct.2019.04.062.
  29. Ghorbanpour Arani, A. and Haghparast, E. (2017), "Size-dependent vibration of axially moving viscoelastic micro-plates based on sinusoidal shear deformation theory", Int. J. Appl. Mech., 9(2), 1750026. https://doi.org/10.1142/S1758825117500260.
  30. Ghorbanpour Arani, A., BabaAkbar-Zarei, H., Pourmousa, P. and Eskandari, M. (2018), "Investigation of free vibration response of smart sandwich micro-beam on Winkler-Pasternak substrate exposed to multi physical fields", Microsyst. Technol., 24(7), 3045-3060. https://doi.org/10.1007/s00542-017-3681-5.
  31. Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Addabedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four-variable refined plate theory", Appl. Math. Mech., 32(7), 925-942. https://doi.org/10.1007/s10483-011-1470-9.
  32. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/J.COMMATSCI.2006.06.011.
  33. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56. https://doi.org/10.1038/354056a0.
  34. Jafari, A. and Ezzati, M. (2017), "Investigating the non-classical boundary conditions relevant to strain gradient theories", Physica E Low Dimens. Syst. Nanostruct., 86, 88-102. https://doi.org/10.1016/J.PHYSE.2016.09.012.
  35. Jafari, A., Shirvani Shah-enayati, S. and Atai, A.A. (2016), "Size dependency in vibration analysis of nano plates; one problem, different answers", Eur. J. Mech. A/Solids, 59, 124-139. https://doi.org/10.1016/J.EUROMECHSOL.2016.03.011.
  36. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/J.MATDES.2016.12.061.
  37. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/J.COMPSTRUCT.2012.11.006.
  38. Liu, Y.P. and Reddy, J.N. (2011), "A nonlocal curved beam model based on a modified couple stress theory", Int. J. Struct. Stab. Dyn., 11(3), 495-512. https://doi.org/10.1142/s0219455411004233.
  39. Liu, P. and Chen, G.F. (2014), Porous Materials: Processing and Applications. Elsevier, New York, USA.
  40. Liu, S., Yu, T. and Bui, T.Q. (2017), "Size effects of functionally graded moderately thick microplates: A novel non-classical simple-FSDT isogeometric analysis", Eur. J. Mech. A/Solids, 66, 446-458. https://doi.org/10.1016/j.euromechsol.2017.08.008.
  41. Liu, S., Yu, T., Van Lich, L., Yin, S. and Bui, T.Q. (2018), "Size effect on cracked functional composite micro-plates by an XIGA-based effective approach", Meccanica, 53(10), 2637-2658. https://doi.org/10.1007/s11012-018-0848-9.
  42. Liu, S., Yu, T., Lich, L.V., Yin, S. and Bui, T.Q. (2019), "Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis", Comput. Struct., 212, 173-187. https://doi.org/10.1016/j.compstruc.2018.10.009.
  43. Lunhui, G., Kazu, S. and Iijima, S. (2008), "Smallest carbon nanotube assigned with atomic resolution accuracy", Nano Lett., 8(2), 459-462. https://doi.org/10.1021/NL072396J.
  44. Magnucki, K. and Stasiewicz, P. (2004), "Elastic buckling of a porous beam", J. Theor. Appl. Mech., 42(4), 859-868.
  45. Malekzadeh, P. and Shojaee, M. (2013), "Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers", Thin-Wall. Struct., 71, 108-118. https://doi.org/10.1016/J.TWS.2013.05.008.
  46. McEvoy, M.A. and Correll, N. (2015), "Materials that couple sensing, actuation, computation, and communication", Science, 347(6228), 1261689. https://doi.org/10.1126/science.1261689.
  47. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
  48. Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
  49. Mohammadimehr, M., Arshid, E., Alhosseini, S.M.A.R., Amir, S. and Arani, M.R.G. (2019), "Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation", Struct. Eng. Mech., Int. J., 70(6), 683-702. https://doi.org/10.12989/sem.2019.70.6.683.
  50. Pagani, A., Boscolo, M., Banerjee, J.R. and Carrera, E. (2013), "Exact dynamic stiffness elements based on one-dimensional higher-order theories for free vibration analysis of solid and thin-walled structures", J. Sound Vib., 332(23), 6104-6127. https://doi.org/10.1016/j.jsv.2013.06.023.
  51. Panah, M., Khorshidvand, A.R., Khorsandijou, S.M. and Jabbari, M. (2019), "Pore pressure and porosity effects on bending and thermal postbuckling behavior of FG saturated porous circular plates", J. Therm. Stresses, 2019, 1-27. https://doi.org/10.1080/01495739.2019.1614502.
  52. Shafiei, N. and Kazemi, M. (2017), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/J.COMPSTRUCT.2017.07.045.
  53. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., Int. J., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  54. Shen, H.S. (2011), "Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, part I: Axially-loaded shells", Compos. Struct., 93(8), 2096-2108. https://doi.org/10.1016/j.compstruct.2011.02.011.
  55. Shen, H.S. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells", Compos. Part B: Eng., 43(3), 1030-1038. https://doi.org/10.1016/J.COMPOSITESB.2011.10.004.
  56. Sobhy, M. and Zenkour, A.M. (2018), "Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams with CNT reinforced face sheets on a viscoelastic substrate", Compos. Part B Eng., 154, 492-506. https://doi.org/10.1016/J.COMPOSITESB.2018.09.011.
  57. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
  58. Thostenson, E.T. and Chou, T.W. (2003), "On the elastic properties of carbon nanotube-based composites: Modelling and characterization", J. Phys. D Appl. Phys., 36(5), 573. https://doi.org/10.1088/0022-3727/36/5/323.
  59. Von Terzaghi, K. (1923), "Die Berechnug der Durchlassigkeit des Tones aus dem Verlauf der hydromechanischen Spannungserscheinungen", Sitzungsber. Akad. Wiss. Math. Naturwiss. Kl., Abt. Iia, 132, 125-138.
  60. Wattanasakulpong, N. and Ungbhakorn, V. (2012), "Free vibration analysis of functionally graded beams with general elastically end constraints by DTM", World J. Mech., 2(6), 297-310. https://doi.org/10.4236/wjm.2012.26036.
  61. Yu, T., Hu, H., Zhang, J. and Bui, T.Q. (2019a), "Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory", Thin-Wall. Struct., 138, 1-14. https://doi.org/10.1016/j.tws.2018.12.006.
  62. Yu, T., Zhang, J., Hu, H. and Bui, T.Q. (2019b), "A novel size-dependent quasi-3D isogeometric beam model for two-directional FG microbeams analysis", Compos. Struct., 211, 76-88. https://doi.org/10.1016/j.compstruct.2018.12.014.
  63. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.