DOI QR코드

DOI QR Code

Flow of MHD Powell-Eyring nanofluid: Heat absorption and Cattaneo-Christov heat flux model

  • Sharif, Humaira (Department of Mathematics, Govt. College University Faisalabad) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Naeem, Muhammad Nawaz (Department of Mathematics, Govt. College University Faisalabad) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Hussain, Sajjad (Department of mathematics, Govt Post graduate college) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2020.07.25
  • Accepted : 2020.12.14
  • Published : 2021.03.25

Abstract

During the previous few years, phenomenon of bioconvection along with the use of nanoparticles showed large number of applications in technological and industrial field. This paper analyzed the bioconvection phenomenon in magnetohydrodynamic boundary layer flow of a Powell-Eyring nanoliquid past a stretchable cylinder with Cattaneo-Christov heat flux. In addition, the impacts of chemical reaction and heat generation/absorption parameter are considered. By the use of appropriate transformation, the governing PDEs (nonlinear) have been transformed and formulated into nonlinear ODEs. The resulting nonlinear ODEs subjected to relevant boundary conditions are solved analytically through homotopy analysis method which is programmed in Mathematica software. Graphical and numerical results versus physical quantities like velocity, temperature, concentration and motile microorganism are investigated under the impact of physical parameters. It is noted that velocity profile enhances as the curvature parameter A and Eyring-Powell fluid parameter M increases but a decline manner for large values of buoyancy ratio parameter Nr and bio-convection Rayleigh number Rb. In the presence of Prandtl number Pr, Eyring-Powell fluid parameter M and heat absorption parameter ��, temperature profile decreases. Nano particle concentration profile increases for increasing values of magnetic parameter Ha and thermophoresis parameter Nt. The motile density profile has revealed a decrement pattern for higher values of bio-convection Lewis number Lb and bio-convection peclet number Pe. This study may find uses in bio-nano coolant systems, advance nanomechanical bio-convection energy conversion equipment's, etc.

Keywords

Acknowledgement

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.

References

  1. Abbas, S.Z., Khan, M.I., Kadry, S., Khan, W.A., Israr-Ur-Rehman, M. and Waqas, M. (2020), "Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy", Comput. Methods Programs Biomed., 190, 105362. https://doi.org/10.1016/j.cmpb.2020.105362.
  2. Abdul Latiff, N.A., Uddin, M.J., Beg, O.A. and Ismail, A.I. (2016), "Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet", Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst., 230(4), 177-187. https://doi.org/10.1177/1740349915613817.
  3. Ahmad Khan, J., Mustafa, M., Hayat, T. and Alsaedi, A. (2015), "Numerical study of Cattaneo-Christov heat flux model for viscoelastic flow due to an exponentially stretching surface", PLOS One, 10(9), e0137363. https://doi.org/10.1371/journal.pone.0137363.
  4. Ahmed, S.E. and Mahdy, A. (2016), "Laminar MHD natural convection of nanofluid containing gyrotactic microorganisms over vertical wavy surface saturated non-Darcian porous media", Appl. Math. Mech., 37(4), 471-484. https://doi.org/10.1007/s10483-016-2044-9.
  5. Ahmed, Z., Nadeem, S., Saleem, S. and Ellahi, R. (2019), "Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface", Int. J. Num. Methods Heat Fluidflow, 29(12), 4607-4623. https://doi.org/10.1108/HFF-04-2019-0346.
  6. Akbar, N.S., Ebaid, A. and Khan, Z.H. (2015), "Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet", J. Magn. Magn. Mater., 382, 355-358. https://doi.org/10.1016/j.jmmm.2015.01.088.
  7. Al-Mdallal, Q., Aman, S., Al Fahel, S., Dadoa, S. and Kreishan, T. (2019), "Numerical study of unsteady flow of a fluid over shrinking long cylinder in a porous medium undermagnetic force", J. Nanofluids, 8(7), 1609-1615. https://doi.org/10.1166/jon.2019.1712.
  8. Alkanhal, T.A., Sheikholeslami, M., Usman, M., Haq, R.U., Shafee, A., Al-Ahmadi, A.S. and Tlili, I. (2019), "Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source", Int. J. Heat Mass Transf., 139, 87-94. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.006.
  9. Alwatban, A.M., Khan, S.U., Waqas, H. and Tlili, I. (2019), "Interaction of Wu's slip features in bioconvection of Eyring Powell nanoparticles with activation energy", Processes, 7(11), 859. https://doi.org/10.3390/pr7110859.
  10. Aziz, A., Alsaedi, A., Muhammad, T. and Hayat, T. (2018), "Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk", Results Phys., 8, 785-792. https://doi.org/10.1016/j.rinp.2018.01.009.
  11. Begum, N., Siddiqa, S. and Hossain, M.A. (2017), "Nanofluid bioconvection with variable thermophysical properties", J. Mol. Liq., 231, 325-332. https://doi.org/10.1016/j.molliq.2017.02.016.
  12. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., Int. J., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
  13. Besthapu, P., Haq, R.U., Bandari, S. and Al-Mdallal, Q.M. (2019), "Thermal radiation and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over a convective stretching surface", Neural Comput. Appl., 31(1), 207-217. https://doi.org/10.1016/j.physe.2014.07.013.
  14. Cattaneo, C. (1948), "Sulla conduzione del calore", Atti Sem. Mat. Fis. Univ. Modena, 3, 83-101.
  15. Chaudhary, M.A. and Merkin, J.H. (1995), "A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow I Equal diffusivities", Fluid Dyn. Res., 16(6), 311. https://doi.org/10.1016/0169-5983(95)00015-6.
  16. Choi, S.U. and Eastman, J.A. (1995), "Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29)", Argonne National Lab., Illinois, USA.
  17. Christov, C.I. (2009), "On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction", Mech. Res. Commun., 36(4), 481-486. https://doi.org/10.1016/j.mechrescom.2008.11.003.
  18. Doh, D.H., Muthtamilselvan, M., Swathene, B. and Ramya, E. (2020), "Homogeneous and heterogeneous reactions in a nanofluid flow due to a rotating disk of variable thickness using HAM", Math. Comput. Simul., 168, 90-110. https://doi.org/10.1016/j.matcom.2019.08.005.
  19. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., Int. J., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
  20. Elnajjar, E.J., Al-Mdallal, Q.M. and Allan, F.M. (2016), "Unsteady flow and heat transfer characteristics of fluid flow over a shrinking permeable infinite long cylinder", J. Heat Transf., 138(9), 091008. https://doi.org/10.1115/1.4033058.
  21. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., Int. J., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
  22. Freidoonimehr, N., Rashidi, M.M. and Mahmud, S. (2015), "Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid", Int. J. Therm. Sci., 87, 136-145. https://doi.org/10.1016/j.ijthermalsci.2014.08.009.
  23. Ghadikolaei, S.S., Yassari, M., Sadeghi, H., Hosseinzadeh, K. and Ganji, D.D. (2017), "Investigation on thermophysical properties of TiO2-Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow", Powder Technol., 322, 428-438. https://doi.org/10.1016/j.powtec.2017.09.006.
  24. Han, S., Zheng, L., Li, C. and Zhang, X. (2014), "Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model", Appl. Math. Lett., 38, 87-93. https://doi.org/10.1016/j.aml.2014.07.013.
  25. Hayat, T., Anwar, M.S., Farooq, M. and Alsaedi, A. (2014), "MHD stagnation point flow of second grade fluid over a stretching cylinder with heat and mass transfer", Int. J. Nonlinear Sci. Num. Simul., 15(6), 365-376. https://doi.org/10.1515/ijnsns-2013-0104.
  26. Hayat, T., Saeed, Y., Alsaedi, A. and Asad, S. (2015), "Effects of convective heat and mass transfer in flow of Powell-Eyring fluid past an exponentially stretching sheet", PLoS One, 10(9), e0133831. https://doi.org/10.1371/journal.pone.0133831.
  27. Hayat, T., Gull, N., Farooq, M. and Ahmad, B. (2016), "Thermal radiation effect in MHD flow of Powell-Eyring nanofluid induced by a stretching cylinder", J. Aerosp. Eng., 29(1), 04015011. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000501.
  28. Hsiao, K.L. (2014), "Nanofluid flow with multimedia physical features for conjugate mixed convection and radiation", Comput. Fluids, 104, 1-8. https://doi.org/10.1016/j.compfluid.2014.08.001.
  29. Hsiao, K.L. (2016), "Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet", Appl. Therm. Eng., 98, 850-861. https://doi.org/10.1016/j.applthermaleng.2015.12.138.
  30. Hsiao, K.L. (2017), "Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature", Int. J. Heat Mass Transf., 112, 983-990. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.042.
  31. Huaxu, L., Fuqiang, W., Dong, Z., Ziming, C., Chuanxin, Z., Bo, L. and Huijin, X. (2020), "Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system", Energy, 194, 116913. https://doi.org/10.1016/j.energy.2020.116913.
  32. Ibrahim, W. and Hindebu, B. (2019), "Magnetohydrodynamic (MHD) boundary layer flow of eyring-powell nanofluid past stretching cylinder with cattaneo-christov heat flux model", Nonlin. Eng., 8(1), 303-317. https://doi.org/10.1515/nleng-2017-0167.
  33. Javed, T., Ali, N., Abbas, Z. and Sajid, M. (2013), "Flow of an Eyring-Powell non-Newtonian fluid over a stretching sheet", Chem. Eng. Commun., 200(3), 327-336. https://doi.org/10.1080/00986445.2012.703151.
  34. Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transf., 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032.
  35. Khan, M.I., Kumar, A., Hayat, T., Waqas, M. and Singh, R. (2019), "Entropy generation in flow of Carreau nanofluid", J. Mol. Liq., 278, 677-687. https://doi.org/10.1016/j.molliq.2018.12.109.
  36. Khan, N.S., Shah, Q., Bhaumik, A., Kumam, P., Thounthong, P. and Amiri, I. (2020), "Entropy generation in bioconvection nanofluid flow between two stretchable rotating disks", Sci. Rep., 10(1), 1-26. https://doi.org/10.1038/s41598-020-61172-2.
  37. Kuznetsov, A.V. (2010), "The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms", Int. Commun. Heat Mass Transf., 37(10), 421-1425. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015.
  38. Kuznetsov, A.V. and Nield, D.A. (2010), "Natural convective boundary-layer flow of a nanofluid past a vertical plate", Int. J. Therm. Sci., 49(2), 243-247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015.
  39. Liao, S. (2014). Advances in the Homotopy Analysis Method, World Scientific, Singapore.
  40. Ma, Y., Mohebbi, R., Rashidi, M.M., Yang, Z. and Sheremet, M.A. (2019), "Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure", Int. J. Heat Mass Transf., 130, 123-134. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.072.
  41. Malik, M.Y., Hussain, A. and Nadeem, S. (2013), "Boundary layer flow of an Eyring-Powell model fluid due to a stretching cylinder with variable viscosity", Scientia Iranica, 20(2), 313-321. https://doi.org/10.1016/j.scient.2013.02.028.
  42. Mishra, S.R., Khan, I., Al-Mdallal, Q.M. and Asifa, T. (2018), "Free convective micropolar fluid flow and heat transfer over a shrinking sheet with heat source", Case Stud Therm Eng, 11, 113-119. https://doi.org/10.1016/j.csite.2018.01.005
  43. Mittal, A.S. (2019), "Analysis of water-based composite MHD fluid flow using HAM", Int. J. Ambient Energy, 2019, 1-13. https://doi.org/10.1080/01430750.2019.1611648.
  44. Mustafa, T. (2016), "Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions", Phys. Fluids, 28(4), 043102. https://doi.org/10.1063/1.4945650.
  45. Nadeem, S., Abbas, N. and Malik, M.Y. (2020), "Inspection of hybrid based nanofluid flow over a curved surface", Comput. Methods Programs Biomed., 189, 105193. https://doi.org/10.1016/j.cmpb.2019.105193.
  46. Prasher, R., Song, D., Wang, J. and Phelan, P. (2006), "Measurements of nanofluid viscosity and its implications for thermal applications", Appl. Phys. Lett., 89(13), 133108. https://doi.org/10.1063/1.2356113.
  47. Ragupathi, P., Hakeem, A.A., Al-Mdallal, Q.M., Ganga, B. and Saranya, S. (2019), "Non-uniform heat source/sink effects on the three-dimensional flow of Fe3O4/Al2O3 nanoparticles with different base fluids past a Riga plate", Case Stud. Therm. Eng., 15, 100521. https://doi.org/10.1016/j.csite.2019.100521,
  48. Reddy, B.S.K., Krishna, M.V., Rao, K.S.N. and Vijaya, R.B. (2018), "RETRACTED: HAM Solutions on MHD flow of nano-fluid through saturated porous medium with hall effects", Mater. Today, 5(1), 120-131. https://doi.org/10.1016/j.matpr.2017.11.062.
  49. Rehman, K.U., Al-Mdallal, Q.M. and Malik, M.Y. (2019), "Symmetry analysis on thermally magnetized fluid flow regime with heat source/sink", Case Stud. Therm. Eng., 14, 100452. https://doi.org/10.1016/j.csite.2019.100452.
  50. Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M. (2019), "Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel", Heat Transf. Res., 50(16), 1539-1560. https://doi.org/10.1615/HeatTransRes.2019025622.
  51. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling". Adv. Nano Res., Int. J., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  52. Saranya, S. and Al-Mdallal, Q.M. (2020), "Non-Newtonian ferrofluid flow over an unsteady contracting cylinder under the influence of aligned magnetic field", Case Stud. Therm. Eng., 21, 100679. https://doi.org/10.1016/j.csite.2020.100679.
  53. Shah, Z., Dawar, A., Kumam, P., Khan, W. and Islam, S. (2019), "Impact of nonlinear thermal radiation on MHD nanofluid thin film flow over a horizontally rotating disk", Appl. Sci., 9(8), 1533. https://doi.org/10.3390/app9081533.
  54. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., Int. J., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  55. Shehzad, S.A. (2018), "Magnetohydrodynamic Jeffrey nanoliquid flow with thermally radiative Newtonian heat and mass species", Revista Mexicana Fisica, 64(6), 628-633. http://dx.doi.org/10.31349/revmexfis.64.628.
  56. Soomro, F.A., Haq, R.U., Al-Mdallal, Q.M. and Zhang, Q. (2018), "Heat generation/absorption and nonlinear radiation effects on stagnation point flow of nanofluid along a moving surface", Results Phys., 8, 404-414. https://doi.org/10.1016/j.rinp.2017.12.037.
  57. Straughan, B. (2008), Stability and Wave Motion in Porous Media, Springer Science & Business Media, Durham, UK.
  58. Straughan, B. (2010), "Thermal convection with the Cattaneo-Christov model", Int. J. Heat Mass Transf., 53(1-3), 95-98. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.001.
  59. Subhani, M. and Nadeem, S. (2019), "Numerical analysis of micropolar hybrid nanofluid", Appl. Nanosci., 9(4), 447-459. https://doi.org/10.1007/s13204-018-0926-2.
  60. Tlili, I., Ramzan, M., Kadry, S., Kim, H.W. and Nam, Y. (2020), "Radiative MHD nanofluid flow over a moving thin needle with Entropy generation in a porous medium with dust particles and Hall current", Entropy, 22(3), 354. https://doi.org/10.3390/e22030354.
  61. Turkyilmazoglu, M. (2016a), "Determination of the correct range of physical parameters in the approximate analytical solutions of nonlinear equations using the Adomian decomposition method", Mediterranean J. Math., 13(6), 4019-4037. https://doi.org/10.1007/s00009-016-0730-8.
  62. Turkyilmazoglu, M. (2016b), "Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions", Phys. Fluids, 28(4), 043102. https://doi.org/10.1063/1.4945650.
  63. Umar, M., Akhtar, R., Sabir, Z., Wahab, H.A., Zhiyu, Z., Imran, A., Shoaib, M. and Raja, M.A.Z. (2019), "Numerical treatment for the three-dimensional Eyring-Powell fluid flow over a stretching sheet with velocity slip and activation energy", Adv. Math. Phys., 2019, 9860471. https://doi.org/10.1155/2019/9860471.
  64. Zangooee, M.R., Hosseinzadeh, K. and Ganji, D.D. (2019), "Hydrothermal analysis of MHD nanofluid (TiO2-GO) flow between two radiative stretchable rotating disks using AGM", Case Stud. Therm. Eng., 14, 100460. https://doi.org/10.1016/j.csite.2019.100460.
  65. Zhao, G., Wang, Z. and Jian, Y. (2019), "Heat transfer of the MHD nanofluid in porous microtubes under the electrokinetic effects", Int. J. Heat Mass Transf., 130, 821-830. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.007.
  66. Zubair, M., Ijaz, M., Abbas, T. and Riaz, A. (2019), "Analysis of modified Fourier law in flow of ferromagnetic Powell-Eyring fluid considering two equal magnetic dipoles", Can. J. Phys., 97(7), 772-776. https://doi.org/10.1139/cjp-2018-0586.