Acknowledgement
This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.
References
- Abbas, S.Z., Khan, M.I., Kadry, S., Khan, W.A., Israr-Ur-Rehman, M. and Waqas, M. (2020), "Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy", Comput. Methods Programs Biomed., 190, 105362. https://doi.org/10.1016/j.cmpb.2020.105362.
- Abdul Latiff, N.A., Uddin, M.J., Beg, O.A. and Ismail, A.I. (2016), "Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet", Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst., 230(4), 177-187. https://doi.org/10.1177/1740349915613817.
- Ahmad Khan, J., Mustafa, M., Hayat, T. and Alsaedi, A. (2015), "Numerical study of Cattaneo-Christov heat flux model for viscoelastic flow due to an exponentially stretching surface", PLOS One, 10(9), e0137363. https://doi.org/10.1371/journal.pone.0137363.
- Ahmed, S.E. and Mahdy, A. (2016), "Laminar MHD natural convection of nanofluid containing gyrotactic microorganisms over vertical wavy surface saturated non-Darcian porous media", Appl. Math. Mech., 37(4), 471-484. https://doi.org/10.1007/s10483-016-2044-9.
- Ahmed, Z., Nadeem, S., Saleem, S. and Ellahi, R. (2019), "Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface", Int. J. Num. Methods Heat Fluidflow, 29(12), 4607-4623. https://doi.org/10.1108/HFF-04-2019-0346.
- Akbar, N.S., Ebaid, A. and Khan, Z.H. (2015), "Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet", J. Magn. Magn. Mater., 382, 355-358. https://doi.org/10.1016/j.jmmm.2015.01.088.
- Al-Mdallal, Q., Aman, S., Al Fahel, S., Dadoa, S. and Kreishan, T. (2019), "Numerical study of unsteady flow of a fluid over shrinking long cylinder in a porous medium undermagnetic force", J. Nanofluids, 8(7), 1609-1615. https://doi.org/10.1166/jon.2019.1712.
- Alkanhal, T.A., Sheikholeslami, M., Usman, M., Haq, R.U., Shafee, A., Al-Ahmadi, A.S. and Tlili, I. (2019), "Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source", Int. J. Heat Mass Transf., 139, 87-94. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.006.
- Alwatban, A.M., Khan, S.U., Waqas, H. and Tlili, I. (2019), "Interaction of Wu's slip features in bioconvection of Eyring Powell nanoparticles with activation energy", Processes, 7(11), 859. https://doi.org/10.3390/pr7110859.
- Aziz, A., Alsaedi, A., Muhammad, T. and Hayat, T. (2018), "Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk", Results Phys., 8, 785-792. https://doi.org/10.1016/j.rinp.2018.01.009.
- Begum, N., Siddiqa, S. and Hossain, M.A. (2017), "Nanofluid bioconvection with variable thermophysical properties", J. Mol. Liq., 231, 325-332. https://doi.org/10.1016/j.molliq.2017.02.016.
- Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., Int. J., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
- Besthapu, P., Haq, R.U., Bandari, S. and Al-Mdallal, Q.M. (2019), "Thermal radiation and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over a convective stretching surface", Neural Comput. Appl., 31(1), 207-217. https://doi.org/10.1016/j.physe.2014.07.013.
- Cattaneo, C. (1948), "Sulla conduzione del calore", Atti Sem. Mat. Fis. Univ. Modena, 3, 83-101.
- Chaudhary, M.A. and Merkin, J.H. (1995), "A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow I Equal diffusivities", Fluid Dyn. Res., 16(6), 311. https://doi.org/10.1016/0169-5983(95)00015-6.
- Choi, S.U. and Eastman, J.A. (1995), "Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29)", Argonne National Lab., Illinois, USA.
- Christov, C.I. (2009), "On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction", Mech. Res. Commun., 36(4), 481-486. https://doi.org/10.1016/j.mechrescom.2008.11.003.
- Doh, D.H., Muthtamilselvan, M., Swathene, B. and Ramya, E. (2020), "Homogeneous and heterogeneous reactions in a nanofluid flow due to a rotating disk of variable thickness using HAM", Math. Comput. Simul., 168, 90-110. https://doi.org/10.1016/j.matcom.2019.08.005.
- Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., Int. J., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
- Elnajjar, E.J., Al-Mdallal, Q.M. and Allan, F.M. (2016), "Unsteady flow and heat transfer characteristics of fluid flow over a shrinking permeable infinite long cylinder", J. Heat Transf., 138(9), 091008. https://doi.org/10.1115/1.4033058.
- Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., Int. J., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
- Freidoonimehr, N., Rashidi, M.M. and Mahmud, S. (2015), "Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid", Int. J. Therm. Sci., 87, 136-145. https://doi.org/10.1016/j.ijthermalsci.2014.08.009.
- Ghadikolaei, S.S., Yassari, M., Sadeghi, H., Hosseinzadeh, K. and Ganji, D.D. (2017), "Investigation on thermophysical properties of TiO2-Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow", Powder Technol., 322, 428-438. https://doi.org/10.1016/j.powtec.2017.09.006.
- Han, S., Zheng, L., Li, C. and Zhang, X. (2014), "Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model", Appl. Math. Lett., 38, 87-93. https://doi.org/10.1016/j.aml.2014.07.013.
- Hayat, T., Anwar, M.S., Farooq, M. and Alsaedi, A. (2014), "MHD stagnation point flow of second grade fluid over a stretching cylinder with heat and mass transfer", Int. J. Nonlinear Sci. Num. Simul., 15(6), 365-376. https://doi.org/10.1515/ijnsns-2013-0104.
- Hayat, T., Saeed, Y., Alsaedi, A. and Asad, S. (2015), "Effects of convective heat and mass transfer in flow of Powell-Eyring fluid past an exponentially stretching sheet", PLoS One, 10(9), e0133831. https://doi.org/10.1371/journal.pone.0133831.
- Hayat, T., Gull, N., Farooq, M. and Ahmad, B. (2016), "Thermal radiation effect in MHD flow of Powell-Eyring nanofluid induced by a stretching cylinder", J. Aerosp. Eng., 29(1), 04015011. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000501.
- Hsiao, K.L. (2014), "Nanofluid flow with multimedia physical features for conjugate mixed convection and radiation", Comput. Fluids, 104, 1-8. https://doi.org/10.1016/j.compfluid.2014.08.001.
- Hsiao, K.L. (2016), "Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet", Appl. Therm. Eng., 98, 850-861. https://doi.org/10.1016/j.applthermaleng.2015.12.138.
- Hsiao, K.L. (2017), "Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature", Int. J. Heat Mass Transf., 112, 983-990. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.042.
- Huaxu, L., Fuqiang, W., Dong, Z., Ziming, C., Chuanxin, Z., Bo, L. and Huijin, X. (2020), "Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system", Energy, 194, 116913. https://doi.org/10.1016/j.energy.2020.116913.
- Ibrahim, W. and Hindebu, B. (2019), "Magnetohydrodynamic (MHD) boundary layer flow of eyring-powell nanofluid past stretching cylinder with cattaneo-christov heat flux model", Nonlin. Eng., 8(1), 303-317. https://doi.org/10.1515/nleng-2017-0167.
- Javed, T., Ali, N., Abbas, Z. and Sajid, M. (2013), "Flow of an Eyring-Powell non-Newtonian fluid over a stretching sheet", Chem. Eng. Commun., 200(3), 327-336. https://doi.org/10.1080/00986445.2012.703151.
- Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transf., 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032.
- Khan, M.I., Kumar, A., Hayat, T., Waqas, M. and Singh, R. (2019), "Entropy generation in flow of Carreau nanofluid", J. Mol. Liq., 278, 677-687. https://doi.org/10.1016/j.molliq.2018.12.109.
- Khan, N.S., Shah, Q., Bhaumik, A., Kumam, P., Thounthong, P. and Amiri, I. (2020), "Entropy generation in bioconvection nanofluid flow between two stretchable rotating disks", Sci. Rep., 10(1), 1-26. https://doi.org/10.1038/s41598-020-61172-2.
- Kuznetsov, A.V. (2010), "The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms", Int. Commun. Heat Mass Transf., 37(10), 421-1425. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015.
- Kuznetsov, A.V. and Nield, D.A. (2010), "Natural convective boundary-layer flow of a nanofluid past a vertical plate", Int. J. Therm. Sci., 49(2), 243-247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015.
- Liao, S. (2014). Advances in the Homotopy Analysis Method, World Scientific, Singapore.
- Ma, Y., Mohebbi, R., Rashidi, M.M., Yang, Z. and Sheremet, M.A. (2019), "Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure", Int. J. Heat Mass Transf., 130, 123-134. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.072.
- Malik, M.Y., Hussain, A. and Nadeem, S. (2013), "Boundary layer flow of an Eyring-Powell model fluid due to a stretching cylinder with variable viscosity", Scientia Iranica, 20(2), 313-321. https://doi.org/10.1016/j.scient.2013.02.028.
- Mishra, S.R., Khan, I., Al-Mdallal, Q.M. and Asifa, T. (2018), "Free convective micropolar fluid flow and heat transfer over a shrinking sheet with heat source", Case Stud Therm Eng, 11, 113-119. https://doi.org/10.1016/j.csite.2018.01.005
- Mittal, A.S. (2019), "Analysis of water-based composite MHD fluid flow using HAM", Int. J. Ambient Energy, 2019, 1-13. https://doi.org/10.1080/01430750.2019.1611648.
- Mustafa, T. (2016), "Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions", Phys. Fluids, 28(4), 043102. https://doi.org/10.1063/1.4945650.
- Nadeem, S., Abbas, N. and Malik, M.Y. (2020), "Inspection of hybrid based nanofluid flow over a curved surface", Comput. Methods Programs Biomed., 189, 105193. https://doi.org/10.1016/j.cmpb.2019.105193.
- Prasher, R., Song, D., Wang, J. and Phelan, P. (2006), "Measurements of nanofluid viscosity and its implications for thermal applications", Appl. Phys. Lett., 89(13), 133108. https://doi.org/10.1063/1.2356113.
- Ragupathi, P., Hakeem, A.A., Al-Mdallal, Q.M., Ganga, B. and Saranya, S. (2019), "Non-uniform heat source/sink effects on the three-dimensional flow of Fe3O4/Al2O3 nanoparticles with different base fluids past a Riga plate", Case Stud. Therm. Eng., 15, 100521. https://doi.org/10.1016/j.csite.2019.100521,
- Reddy, B.S.K., Krishna, M.V., Rao, K.S.N. and Vijaya, R.B. (2018), "RETRACTED: HAM Solutions on MHD flow of nano-fluid through saturated porous medium with hall effects", Mater. Today, 5(1), 120-131. https://doi.org/10.1016/j.matpr.2017.11.062.
- Rehman, K.U., Al-Mdallal, Q.M. and Malik, M.Y. (2019), "Symmetry analysis on thermally magnetized fluid flow regime with heat source/sink", Case Stud. Therm. Eng., 14, 100452. https://doi.org/10.1016/j.csite.2019.100452.
- Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M. (2019), "Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel", Heat Transf. Res., 50(16), 1539-1560. https://doi.org/10.1615/HeatTransRes.2019025622.
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling". Adv. Nano Res., Int. J., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
- Saranya, S. and Al-Mdallal, Q.M. (2020), "Non-Newtonian ferrofluid flow over an unsteady contracting cylinder under the influence of aligned magnetic field", Case Stud. Therm. Eng., 21, 100679. https://doi.org/10.1016/j.csite.2020.100679.
- Shah, Z., Dawar, A., Kumam, P., Khan, W. and Islam, S. (2019), "Impact of nonlinear thermal radiation on MHD nanofluid thin film flow over a horizontally rotating disk", Appl. Sci., 9(8), 1533. https://doi.org/10.3390/app9081533.
- Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., Int. J., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
- Shehzad, S.A. (2018), "Magnetohydrodynamic Jeffrey nanoliquid flow with thermally radiative Newtonian heat and mass species", Revista Mexicana Fisica, 64(6), 628-633. http://dx.doi.org/10.31349/revmexfis.64.628.
- Soomro, F.A., Haq, R.U., Al-Mdallal, Q.M. and Zhang, Q. (2018), "Heat generation/absorption and nonlinear radiation effects on stagnation point flow of nanofluid along a moving surface", Results Phys., 8, 404-414. https://doi.org/10.1016/j.rinp.2017.12.037.
- Straughan, B. (2008), Stability and Wave Motion in Porous Media, Springer Science & Business Media, Durham, UK.
- Straughan, B. (2010), "Thermal convection with the Cattaneo-Christov model", Int. J. Heat Mass Transf., 53(1-3), 95-98. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.001.
- Subhani, M. and Nadeem, S. (2019), "Numerical analysis of micropolar hybrid nanofluid", Appl. Nanosci., 9(4), 447-459. https://doi.org/10.1007/s13204-018-0926-2.
- Tlili, I., Ramzan, M., Kadry, S., Kim, H.W. and Nam, Y. (2020), "Radiative MHD nanofluid flow over a moving thin needle with Entropy generation in a porous medium with dust particles and Hall current", Entropy, 22(3), 354. https://doi.org/10.3390/e22030354.
- Turkyilmazoglu, M. (2016a), "Determination of the correct range of physical parameters in the approximate analytical solutions of nonlinear equations using the Adomian decomposition method", Mediterranean J. Math., 13(6), 4019-4037. https://doi.org/10.1007/s00009-016-0730-8.
- Turkyilmazoglu, M. (2016b), "Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions", Phys. Fluids, 28(4), 043102. https://doi.org/10.1063/1.4945650.
- Umar, M., Akhtar, R., Sabir, Z., Wahab, H.A., Zhiyu, Z., Imran, A., Shoaib, M. and Raja, M.A.Z. (2019), "Numerical treatment for the three-dimensional Eyring-Powell fluid flow over a stretching sheet with velocity slip and activation energy", Adv. Math. Phys., 2019, 9860471. https://doi.org/10.1155/2019/9860471.
- Zangooee, M.R., Hosseinzadeh, K. and Ganji, D.D. (2019), "Hydrothermal analysis of MHD nanofluid (TiO2-GO) flow between two radiative stretchable rotating disks using AGM", Case Stud. Therm. Eng., 14, 100460. https://doi.org/10.1016/j.csite.2019.100460.
- Zhao, G., Wang, Z. and Jian, Y. (2019), "Heat transfer of the MHD nanofluid in porous microtubes under the electrokinetic effects", Int. J. Heat Mass Transf., 130, 821-830. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.007.
- Zubair, M., Ijaz, M., Abbas, T. and Riaz, A. (2019), "Analysis of modified Fourier law in flow of ferromagnetic Powell-Eyring fluid considering two equal magnetic dipoles", Can. J. Phys., 97(7), 772-776. https://doi.org/10.1139/cjp-2018-0586.