DOI QR코드

DOI QR Code

Analyzing corrosion rates of TiO2 nanotubes/titanium separation passive layer under surface and crystallization changes

  • Torres, I. Zamudio (Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C.) ;
  • Dominguez, A. Sosa (Universidad Autonoma de Queretaro, Facultad de Quimica) ;
  • Bueno, J.J. Perez (Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C.) ;
  • Meas, Y. (Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C.) ;
  • Lopez, M.L. Mendoza (Tecnologico Nacional de Mexico, Instituto Tecnologico de Queretaro) ;
  • Dector, A. (CONACYT, Universidad Tecnologica de San Juan del Rio)
  • Received : 2020.05.13
  • Accepted : 2020.10.21
  • Published : 2021.03.25

Abstract

The evaluation of the corrosion resistance of titanium with a TiO2 nanotubes top layer was carried out (TiO2 NT). These nanostructures were evolved into anatase nanoparticles without heat treatment in an aqueous medium, which is a novel phenomenon. This work analyzes the layer between the nanotube bottom and the substrate, which is thin and still susceptible to corrosion. The bottom of TiO2 nanotubes having Fluor resulting from the synthesis process changed between amorphous to crystalline anatase with a crystallite size of about 4 nm, which influenced the corrosion rates. Four kinds of samples were evaluated. A) NT by Ti anodizing; B) NTSB for Ti plates, either modifying its surface or anodizing the modified surface; C) NT-480 for anodized Ti and heat-treated (480℃) for reaching the anatase phase; D) NTSB-480 for Ti plates, first, modifying its surface using sandblast, after that, anodizing the modified surface, and finally, heat-treated to 480℃ to compare with samples having induced crystallization and passivation. Four electrochemical techniques were used to evaluate the corrosion rates. The surfaces having TiO2 nanotubes with a sandblast pre-treatment had the highest resistance to corrosion.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Council of Science and Technology (CONACYT, Grants CEMIE-Sol No. 207450 and LNMG 299124). Thanks to the Center of Nanoscience and Micro and Nanotechnologies for its help in obtaining SEM results, especially to Hugo Martínez Gutiérrez and Héctor Mendoza De León.

References

  1. Al-Mobarak, N.A., Khaled, K.F., Hamed, M.N.H. and Abdel-Azim, K.M. (2011), "Employing electrochemical frequency modulation for studying corrosion and corrosion inhibition of copper in sodium chloride solutions", Arab. J. Chem., 4, 185-193. https://doi.org/10.1016/j.arabjc.2010.06.036.
  2. Bolat, G., Izquierdo, J., Gloriant, T., Chelariu, R., Mareci, D. and Souto, R.M. (2015), "Investigation of processing effects on the corrosion resistance of Ti20Mo alloy in saline solutions", Corros. Sci., 98, 170-179. https://doi.org/10.1016/j.corsci.2015.05.025.
  3. Bosch, R.W. and Bogaerts, W.F. (1996), "Instantaneous corrosion rate measurement with small-amplitude potential intermodulation techniques", Corrosion, 52, 204-212. https://doi.org/10.5006/1.3292115.
  4. Bosch, R.W., Hubrecht, J., Bogaerts, W.F. and Syrett, B.C. (2001), "Electrochemical frequency modulation: A new electrochemical technique for online corrosion monitoring", Corrosion, 57, 60-70. https://doi.org/10.5006/1.3290331.
  5. Chang, Y.J., Lee, J.W., Chen, H.P., Liu, L.S. and Weng, G.J. (2011), "Photocatalytic characteristics of TiO2 nanotubes with different microstructures prepared under different pulse anodizations", Thin Solid Films, 519, 3334-3339. https://doi.org/10.1016/j.tsf.2010.12.155.
  6. Chen, J., Dai, S., Liu, L., Maitz, M.F., Liao, Y., Cui, J., Zhao, A., Yang, P., Huang, N. and Wang, Y. (2021), "Photo-functionalized TiO2 nanotubes decorated with multifunctional Ag nanoparticles for enhanced vascular biocompatibility", Bioact. Mater., 6, 45-54. https://doi.org/10.1016/j.bioactmat.2020.07.009.
  7. Dhibar, S., Sahoo, S., Das, C.K. and Singh, R. (2013), "Investigations on copper chloride doped polyaniline composites as efficient electrode materials for supercapacitor applications", J. Mater. Sci. Mater. Electron., 24, 576-585. https://doi.org/10.1007/s10854-012-0800-z.
  8. Fouda, A.S. and Wahed, H.A.A. (2011), "Corrosion inhibition of copper in HNO3 solution using thiophene and its derivatives", Arab. J. Chem., 9, 591-599. https://doi.org/10.1016/j.arabjc.2011.02.014.
  9. Fraoucene, H., Hatem, D., Vacandio, F. and Pasquinelli, M. (2019), "TiO2 nanotubes with nanograss structure: The effect of the anodizing voltage on the formation mechanism and structure properties", J. Electron. Mater., 48, 2046-2054. https://doi.org/10.1007/s11664-019-06951-y.
  10. Ge, M., Li, Q., Cao, C., Huang, J., Li, S., Zhang, S., Chen, Z., Zhang, K., Al-Deyab, S.S. and Lai, Y. (2017), "One-dimensional TiO2 Nanotube Photocatalysts for Solar Water Splitting", Adv. Sci., 4, 1600152. https://doi.org/10.1002/advs.201600152.
  11. Genova-Koleva, R.V., Alcaide, F., A lvarez, G., Cabot, P.L., Grande, H.J., Martinez-Huerta, M.V. and Miguel, O. (2019), "Supporting IrO2 and IrRuOx nanoparticles on TiO2 and Nb-doped TiO2 nanotubes as electrocatalysts for the oxygen evolution reaction", J. Energy Chem., 34, 227-239. https://doi.org/10.1016/j.jechem.2019.03.008.
  12. Gu, S., Marianov, A.N., Zhu, Y. and Jiang, Y. (2021), "Cobalt porphyrin immobilized on the TiO2 nanotube electrode for CO2 electroreduction in aqueous solution", J. Energy Chem., 55, 219-227. https://doi.org/10.1016/j.jechem.2020.06.067.
  13. Jayaraman, S., Rajarathnam, D. and Srinivasan, M.P. (2010), "Formation of polythiophene multilayers on solid surfaces by covalent molecular assembly", Mater. Sci. Eng. B, 168, 45-54. https://doi.org/10.1016/j.mseb.2010.01.052.
  14. Jovanovic, T., Milikic, J., Cvjeticanin, N., Stojadinovic, S. and Sljukic, B. (2020), "Performance of Au/Ti and Au/TiO2 nanotube array electrodes for borohydride oxidation and oxygen reduction reaction in alkaline media", Electroanalysis, 32, 1867-1874. https://doi.org/10.1002/elan.202060015.
  15. Kus, E. and Mansfeld, F. (2006), "An evaluation of the electrochemical frequency modulation (EFM) technique", Corros. Sci., 48, 965-979. https://doi.org/10.1016/j.corsci.2005.02.023.
  16. Li, B., Anwer, S., Huang, X., Luo, S., Fu, J. and Liao, K. (2021), "Nitrogen-doped carbon encapsulated in mesoporous TiO2 nanotubes for fast capacitive sodium storage", J. Energy Chem., 55, 202-210. https://doi.org/10.1016/j.jechem.2020.06.074.
  17. Liu, Y., Wan, L., Wang, J., Cheng, L., Chen, R. and Ni, H. (2020), "Binary electrocatalyst composed of Mo2C nanocrystals with ultra-low Pt loadings anchored in TiO2 nanotube arrays for hydrogen evolution reaction", Appl. Surf. Sci., 509, 144679. https://doi.org/10.1016/j.apsusc.2019.144679.
  18. Mazare, A., Totea, G., Burnei, C., Schmuki, P., Demetrescu, I. and Ionita, D. (2016), "Corrosion, antibacterial activity and haemocompatibility of TiO2 nanotubes as a function of their annealing temperature", Corros. Sci., 103, 215-222. https://doi.org/10.1016/j.corsci.2015.11.021.
  19. McIntyre, P.J. and Mercer, A.D. (2010), "2.34 - corrosion testing and determination of corrosion rates, in: Shreir's corrosion", 1443-1526. http://dx.doi.org/10.1016/B978-044452787-5.00073-1.
  20. Noh, K.J., Nam, I. and Han, J.W. (2020), "Nb-TiO2 nanotubes as catalyst supports with high activity and durability for oxygen reduction", Appl. Surf. Sci., 521, 146330. https://doi.org/10.1016/j.apsusc.2020.146330.
  21. Ouyang, W., Teng, F. and Fang, X. (2018), "High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self-Induced inner electric fields in the BiOCl nanosheets", Adv. Funct. Mater., 28, 1707178. https://doi.org/10.1002/adfm.201707178.
  22. Patil, D.S., Shaikh, J.S., Dalavi, D.S., Karanjkar, M.M., Devan, R.S., Ma, Y.R. and Patil, P.S. (2011), "An Mn doped polyaniline electrode for electrochemical supercapacitor", J. Electrochem. Soc., 158, 653-657. https://doi.org/10.1149/1.3561428.
  23. Paul, S., Pattanayak, A. and Guchhait, S.K. (2014), "Corrosion behavior of carbon steel in synthetically produced oil field seawater", Int. J. Met., 2014, 1-11. https://doi.org/10.1155/2014/628505.
  24. Rauf, A. and Bogaerts, W.F. (2009), "Monitoring of crevice corrosion with the electrochemical frequency modulation technique", Electrochim. Acta, 54, 7357-7363. https://doi.org/10.1016/j.electacta.2009.07.066.
  25. Rauf, A. and Bogaerts, W.F. (2010), "Employing electrochemical frequency modulation for pitting corrosion", Corros. Sci., 52, 2773-2785. https://doi.org/10.1016/j.corsci.2010.04.016.
  26. Saha, J.K., Mitra, P.K., Paul, S. and Singh, D.D.N. (2010), "Performance of different organic coatings on steel substrate by accelerated and in atmospheric exposure tests", Indian J. Chem. Technol., 17, 102-110.
  27. Santamaria, M., Conigliaro, G., Di Franco, F., Megna, B. and Di Quarto, F. (2017), "Electronic properties of thermal oxides on Ti and their influence on impedance and photoelectrochemical behavior of TiO2 nanotubes", J. Electrochem. Soc., 164, 113-120. https://doi.org/10.1149/2.0601704jes.
  28. Schlicht, S., Buttner, P. and Bachmann, J. (2019), "Highly active Ir/TiO2 electrodes for the oxygen evolution reaction using atomic layer deposition on ordered porous substrates", ACS Appl. Energy Mater., 2, 2344-2349. https://doi.org/10.1021/acsaem.9b00402.
  29. Shang, F., Chen, S., Liang, J. and Liu, C. (2018), "The photocatalytic properties and mechanistic study of ZnO, Ag multiphase Co-composited TiO2 nanotube arrays film prepared by one-step anodization method", J. Electrochem. Soc., 165, 258-265. https://doi.org/10.1149/2.0251807jes.
  30. Sierra-Uribe, H., Cordoba-Tuta, E.M. and Acevedo-Pena, P. (2017), "The effect of the heating rate on anatase crystal orientation and its impact on the photoelectrocatalytic performance of TiO2 nanotube arrays", J. Electrochem. Soc., 164, 279-285. https://doi.org/10.1149/2.0241706jes.
  31. Sumi, H., Shimada, H., Yamaguchi, Y. and Yamaguchi, T. (2017), "Effect of anode thickness on polarization resistance for metal-supported microtubular solid oxide fuel cells", J. Electrochem. Soc., 164, 243-247. https://doi.org/10.1149/2.0431704jes.
  32. Supraja, N., Avinash, B. and Prasad, T.N.V.K.V. (2017), "Nelumbo nucifera extracts mediated synthesis of silver nanoparticles for the potential applications in medicine and environmental remediation", Adv. Nano Res., Int. J., 5(4), 373-392. https://doi.org/10.12989/anr.2017.5.4.373.
  33. Tho, N.T., Thi, C.M., Van Hieu, L. and Van Viet, P. (2020), "Visible-light-driven photocatalysis for methylene blue degradation and hydrogen evolution reaction: A case of black TiO2 nanotube arrays", J. Aust. Ceram. Soc., 56, 849-857. https://doi.org/10.1007/s41779-019-00405-8.
  34. Wang, S., Guan, B.Y., Yu, L. and Lou, X.W.D. (2017), "Rational design of three-layered TiO2@Carbon@MoS2 hierarchical nanotubes for enhanced lithium storage", Adv. Mater., 29, 1702724. https://doi.org/10.1002/adma.201702724
  35. Wang, S., Zhang, Z., Huo, W., Zhang, X., Fang, F., Xie, Z. and Jiang, J. (2021), "Single-crystal-like black Zr-TiO2 nanotube array film: An efficient photocatalyst for fast reduction of Cr(VI)", Chem. Eng. J., 403, 126331. https://doi.org/10.1016/j.cej.2020.126331.
  36. Xu, L., Niu, J., Xie, H., Ma, X., Zhu, Y. and Crittenden, J. (2021), "Effective degradation of aqueous carbamazepine on a novel blue-colored TiO2 nanotube arrays membrane filter anode", J. Hazard. Mater., 402, 123530. https://doi.org/10.1016/j.jhazmat.2020.123530.
  37. Yoriya, S., Paulose, M., Varghese, O.K., Mor, G.K. and Grimes, C.A. (2007), "Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxide electrolytes", J. Phys. Chem. C, 111, 13770-13776. https://doi.org/10.1021/jp074655z.
  38. Zamudio Torres, I., Perez Bueno, J.D.J., Torres Lopez, C.Y., Lartundo Rojas, L., Mendoza Lopez, M.L. and Vong, Y.M. (2016a), "A phenomenon of degradation of methyl orange observed during the reaction of NH4TiOF3 nanotubes with the aqueous medium to produce TiO2 anatase nanoparticles", RSC Adv., 6, 76167-76173. https://doi.org/10.1039/C6RA15149C.
  39. Zamudio Torres, I., Perez Bueno, J.D.J., Torres Lopez, C.Y., Lartundo Rojas, L., Mendoza Lopez, M.L. and Vong, Y.M. (2016b), "Nanotubes with anatase nanoparticulate walls obtained from NH4TiOF3 nanotubes prepared by anodizing Ti", RSC Adv., 6, 41637-41643. https://doi.org/10.1039/C6RA05738A.
  40. Zhao, C., Yu, C., Zhang, M., Huang, H., Li, S., Han, X., Liu, Z., Yang, J., Xiao, W., Liang, J., Sun, X. and Qiu, J. (2017), "Ultrafine MoO2-Carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance", Adv. Energy Mater., 7, 1602880. https://doi.org/10.1002/aenm.201602880.
  41. Zhou, X., Liu, N. and Schmuki, P. (2017), "Photocatalysis with TiO2 nanotubes: 'Colorful' reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes", ACS Catal., 7, 3210-3235. https://doi.org/10.1021/acscatal.6b03709.