DOI QR코드

DOI QR Code

Effect of method of synthesis on antifungal ability of ZnO nanoparticles: Chemical route vs green route

  • Patino-Portela, Melissa C. (Grupo de Investigacion en Microscopia y Analisis de Imagenes (GIMAI), Universidad del Cauca) ;
  • Arciniegas-Grijalba, Paola A. (Grupo de Investigacion en Microscopia y Analisis de Imagenes (GIMAI), Universidad del Cauca) ;
  • Mosquera-Sanchez, Lyda P. (Grupo de Investigacion en Microscopia y Analisis de Imagenes (GIMAI), Universidad del Cauca) ;
  • Sierra, Beatriz E. Guerra (Grupo de Investigacion en Biotecnologia Agroambiente y Salud-Microbiota, Universidad de Santander) ;
  • Munoz-Florez, Jaime E. (Grupo de Investigacion en Diversidad Biologica, Universidad Nacional de Colombia) ;
  • Erazo-Castillo, Luis A. (Grupo de Investigacion en Ciencia y Tecnologia de Materiales Ceramicos (CYTEMAC) Departamento de Fisica, Universidad del Cauca) ;
  • Rodriguez-Paez, Jorge E. (Grupo de Investigacion en Ciencia y Tecnologia de Materiales Ceramicos (CYTEMAC) Departamento de Fisica, Universidad del Cauca)
  • 투고 : 2020.02.13
  • 심사 : 2021.01.06
  • 발행 : 2021.02.25

초록

To compare the antifungal effect of two nanomaterials (NMs), nanoparticles of zinc oxide were synthesized by a chemical route and zinc oxide-based nanobiohybrids were obtained using green synthesis in an extract of garlic (Allium sativum). The techniques of X-Ray Diffraction (XRD), Infrared (IR) and Ultraviolet Visible (UV-Vis) absorption spectroscopies and Scanning (SEM) and Transmission Electron Microscopies (TEM) were used to determine the characteristics of the nanomaterials synthesized. The results showed that the samples obtained were of nanometric size (< 100 nm). To compare their antifungal capacity, their effect on Cercospora sp. was evaluated. Test results showed that both nanomaterials had an antifungal capacity. The nanobiohybrids (green route) gave an inhibition of fungal growth of ~72.4% while with the ZnO-NPs (chemical route), inhibition was ~87.1%. Microstructural studies using High Resolution Optical Microscopy (HROM) and ultra-structural analysis using TEM carried out on the treated strains demonstrated the effect of the nanofungicides on the vegetative and reproductive structures, as well as on their cell wall. To account for the antifungal effect presented by ZnO-NPs and ZnO nanobiohybrids on the fungi tested, effects reported in the literature related to the action of nanomaterials on biological entities were considered. Specifically, we discuss the electrical interaction of the ZnO-NPs with the cell membrane and the biomolecules (proteins) present in the fungi, taking into account the n-type nature of the ZnO semiconductor and the electrical behavior of the fungal cell membrane and that of the proteins that make up the protein crown.

키워드

과제정보

We are grateful to COLCIENCIAS for funding relating to project code number 110365842673 COLCIENCIAS ID 4241 and to the VRI for providing logistical support. We are especially grateful to Colin McLachlan for suggestions relating to the English text.

참고문헌

  1. Aala, F., Yusuf, U.K., Nulit, R. and Rezaie, S. (2014), "Inhibitory effect of allicin and garlic extracts on growth of cultured hyphae", Iran. J. Basic Med. Sci., 17, 150.
  2. Abd-Elsalam, K.A. and Alghuthaymi, M.A. (2015), "Nanobio-fungicides: Are they the next-generation of fungicides", J. Nanotech. Mater. Sci., 2, 1-3. https://doi.org/10.15436/2377-1372.15.0.
  3. Agarwal, H., Venkat Kumar, S. and Rajeshkumar, S. (2017), "A review on green synthesis of zinc oxide nanoparticles - an ecofriendly approach", Resour. Technol., 3, 406-413. https://doi.org/10.1016/j.reffit.2017.03.002.
  4. Ahmed, S., Annu Chaudhry, S.A. and Ikram, S. (2017), "A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry", J. Photochem. Photobiol. B Biol., 166, 272-284. https://doi.org/10.1016/j.jphotobiol.2016.12.011.
  5. Ahrland, S., Chatt, J. and Davies N.R. (1958), "The relative affinities of ligand atoms for acceptor molecules and ions", Q. Rev. Chem. Soc., 12, 265-276. https://doi.org/10.1039/QR9581200265.
  6. Aladpoosh, R. and Montazer, M. (2015), "The role of cellulosic chains of cotton in biosynthesis of ZnO nanorods producing multifunctional properties: Mechanism, characterizations and features", Carbohydr. Polym., 126, 122-129. https://doi.org/10.1016/j.carbpol.2015.03.036.
  7. Ali, K., Dwivedi, S., Azam, A., Saquib, Q., Al-Said, M.S., Alkhedhairy, A.A. and Musarrat, J. (2016), "Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates", J. Colloid Interface Sci., 472, 145-156. https://doi.org/doi.org/10.1016/j.jcis.2016.03.021.
  8. Alwan, R.M., Kadhim, Q.A., Sahan, K.M., Ali, R.A., Mahdi, R.J., Kassim, N.A. and Jassim, A.N. (2015), "Synthesis of zinc oxide nanoparticles via sol-gel route and their characterization", Nanosci. Nanotechnol., 5, 1-6. https://doi.org/10.5923/j.nn.20150501.01.
  9. Ambika, S. and Sundrarajan, M. (2015), "Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria", J. Photochem. Photobiol. B Biol., 146, 52-57. https://doi.org/10.1016/j.jphotobiol.2015.02.020.
  10. Anbuvannan, M., Ramesh, M., Viruthagiri, G., Shanmugam, N. and Kannadasan, N. (2015), "Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities", Mater. Sci. Semicond. Process, 39, 621-628. https://doi.org/10.1016/j.mssp.2015.06.005.
  11. Arakha, M., Saleem, M., Mallick, B.C. and Jha, S. (2015), "The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle", Sci. Rep., 5, 9578. https://doi.org/10.1038/srep09578.
  12. Arciniegas-Grijalba, P.A., Patino-Portela, M.C., Mosquera-Sanchez, L.P., Guerrero-Vargas, J.A. and Rodriguez-Paez, J.E. (2017), "ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor", Appl. Nanosci., 7, 225-241. https://doi.org/10.1007/s13204-017-0561-3.
  13. Arciniegas-Grijalba, P.A., Patino-Portela, M.C., Mosquera-Sanchez, L.P., Guerra Sierra, B.E., Munoz-Florez, J.E., Erazo-Castillo, L.A. and Rodriguez-Paez, J.E. (2019), "ZnO-based nanofungicides: Synthesis, characterization and their effect on the coffee fungi Mycena citricolor and Colletotrichum sp", Mater. Sci. Eng. C, 98, 808-825. https://doi.org/10.1016/j.msec.2019.01.031.
  14. Arndtsen, B.A., Bergman, R.G., Mobley, T.A. and Peterson, T.H. (1995), "Selective intermolecular carbon-hydrogen bond activation by synthetic metal complexes in homogeneous solution", Acc. Chem. Res., 28, 154-162. https://doi.org/10.1021/ar00051a009.
  15. Avila, H., Cruz, M., Villegas, M., Caballero, C. and Rodriguez-Paez, J.E. (2004), "Estudio comparativo de dos metodos de sintesis para la obtencion de polvos ceramicos de ZnO-Pr[Comparative study of two methods of synthesis to obtain ceramic powders of ZnO - Pr]", Bol. Soc. Esp. Ceram., 43, 740-744 (in Spanish). https://doi.org/10.3989/cyv.2004.v43.i4.421
  16. Bak, T., Nowotny, J., Sucher, N.J. and Wachsman, E. (2011), "Effect of crystal imperfections on reactivity and photoreactivity of TiO2 (Rutile) with oxygen, water and bacteria", J. Phys. Chem. C, 115, 15711-15738. https://doi.org/10.1021/jp2027862.
  17. Basolo, F. and Johnson, R.C. (1967), "Quimica de los compuestos de coordinacion[Coordination Chemistry]", Editorial Reverte, Barcelona, Espana (in Spanish).
  18. Beckman, E.J. (2003), "Oxidation reactions in CO2: Academic exercise or future green processes?", Environ. Sci. Technol., 37, 5289-5296. https://doi.org/10.1021/es034540i.
  19. Bowman, S.M. and Free, S.J. (2006), "The structure and synthesis of the fungal cell wall", Bioessays, 28(8), 799-808. https://doi.org/10.1002/bies.20441.
  20. Bozzola, J.J. and Russell, L.D. (1999), Electron Microscopy: Principles and Techniques for Biologists, Jones and Bartlett, Toronto, Canada.
  21. Brunner, T.J., Wick, P., Manser, P., Spohn, P., Grass, R.N., Limbach, L.K., Bruinink, A. and Stark, W.J. (2006), "In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility", Environ. Sci. Technol., 40, 4374-4381. https://doi.org/10.1021/es052069i.
  22. Buzea, C., Pacheco, I.I. and Robbie, K. (2007), "Nanomaterials and nanoparticles: Sources and toxicity". Biointerphases, 2, 17-71. https://doi.org/10.1116/1.2815690.
  23. Casals, E. and Puntes, V.F. (2012), "Inorganic nanoparticle biomolecular corona: Formation, evolution and biological impact", Nanomedicine, 7(12), 1917-1930. https://doi.org/10.2217/nnm.12.169.
  24. Crabtree, R.H. (2004), "Organometallic alkane CH activation", J. Organomet. Chem., 689, 4083-4091. https://doi.org/10.1016/j.jorganchem.2004.07.034.
  25. Cui, X., Yin, J., Lin, Y., Li, N., Wang, M. and Shen, D., (2016), "Towards a definition of harmless nanoparticles from an environmental and safety perspective", J. Chem., 2016, 1-12. https://doi.org/10.1155/2016/8608567.
  26. Dakhlaoui, A., Jendoubi, M., Smiri, L.S., Kanaev, A. and Jouini, N. (2009), "Synthesis, characterization and optical properties of ZnO nanoparticles with controlled size and morphology", J. Cryst. Growth, 311, 3989-3996. https://doi.org/10.1016/j.jcrysgro.2009.06.028.
  27. De Lucas-Gil, E., Reinosa, J.J., Neuhaus, K., Vera-Londono, L., Martin-Gonzalez, M., Fernandez, J.F. and Rubio-Marcos, F. (2017), "Exploring new mechanisms for effective antimicrobial materials: Electric contact-killing based on multiple Schottky barriers", ACS Appl. Mater. Interfaces, 9(31), 26219-26225. https://doi.org/10.1021/acsami.7b09695.
  28. De Lucas-Gil, E., Leret, P., Monte-Serrano, M., Reinosa, J.J., Enriquez, E., Del Campo, A., Canete, M., Menendez, J., Fernandez, J.F. and Rubio-Marcos, F. (2018), "ZnO nanoporous spheres with broad-spectrum antimicrobial activity by physicochemical interactions", ACS Appl. Nano Mater., 1, 3214-3225. https://doi.org/10.1021/acsanm.8b00402.
  29. Demongeot, A., Mougnier, S.J., Okada, S., Soulie-Ziakovic, C. and Tournilhac, F. (2016), "Coordination and catalysis of Zn2+ in epoxy-based vitrimers", Polym. Chem., 7, 4486-4493. https://doi.org/10.1039/C6PY00752J.
  30. Djurisic, A.B. and Leung, Y.H. (2006), "Optical properties of ZnO nanostructures", Small, 2, 944-961. https://doi.org///doi.org/10.1002/smll.200600134.
  31. Dobrucka, R. and Dlugaszewska, J. (2016), "Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract", Saudi. J. Biol. Sci., 23, 517-523. https://doi.org///doi.org/10.1016/j.sjbs.2015.05.016.
  32. Feofilova, E.P. (2010), "The fungal cell wall: Modern concepts of its composition and biological function", Microbiology, 79, 711-720. https://doi.org/10.1134/S0026261710060019.
  33. Fievet, F. and Brayner, R. (2013), Nanomaterials: A Danger or a Promise?, Springer, London, UK. https://doi.org/10.1007/978-1-4471-4213-3.
  34. Fleischer, C.C. and Payne, C.K. (2014), "Nanoparticle-cell interactions: Molecular structure of the protein corona and cellular outcomes", Acc. Chem. Res., 47, 2651-2659. https://doi.org/10.1021/ar500190q.
  35. Gerischer, H. (1990), "The impact of semiconductors on the concepts of electrochemistry", Electrochim. Acta, 35(11-12), 1677-1699. https://doi.org/10.1016/0013-4686(90)87067-C.
  36. Glatz, M., Schroffenegger M., Weil, M. and Karl Kirchner, K. (2016), "Crystal structure of hexakis (dimethyl sulfoxide-κO) manganese(II) diiodide", Acta Cryst., 72, 904-906. http://dx.doi.org/10.1107/S2056989016008896.
  37. Gow, N.A.R., Latge, J.P. and Munro, C.A. (2017), The Fugal Kingdom, ASM Press, Washington, USA. https://doi.org/10.1128/microbiolspec.FUNK-0035-2016.
  38. Guo, J. and Peng, C. (2015), "Synthesis of ZnO nanoparticles with a novel combustion method and their C2H5OH gas sensing properties", Ceram. Int., 41, 2180-2186. https://doi.org/10.1016/j.ceramint.2014.10.017.
  39. Guo, Z., Ambrosio, F., Chen, W., Gono, P. and Pasquarello, A. (2018), "Alignment of redox levels at semiconductor-water interfaces", Chem. Mater., 30, 94-111. https://doi.org/10.1021/acs.chemmater.7b02619.
  40. Hartono, D., Hody Yang, K.L. and Lanry Yung, L.Y. (2010), "The effect of cholesterol on protein-coated gold nanoparticle binding to liquid crystal-supported models of cell membranes", Biomaterials, 31, 3008-3015. https://doi.org/10.1016/j.biomaterials.2010.01.003.
  41. He, L., Liu, Y., Mustapha, A. and Lin, M. (2011), "Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum", Microbiol. Res., 166, 207-215. https://doi.org/10.1016/j.micres.2010.03.003.
  42. Heiligtag, F.J. and Niederberger, M. (2013), "The fascinating world of nanoparticle research", Mater. Today, 16, 262-271. https://doi.org/10.1016/j.mattod.2013.07.004.
  43. Hussain, I., Singh, N.B., Singh, A., Singh, H. and Singh, S.C. (2016), "Green synthesis of nanoparticles and its potential application", Biotechnol. Lett., 38, 545-560. https://doi.org/10.1007/s10529-015-2026-7.
  44. Jafarirad, S., Mehrabi, M., Divband, B. and Kosari-Nasab, M. (2016), "Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach", Mater. Sci. Eng. C, 59, 296-302. https://doi.org/10.1016/j.msec.2015.09.089.
  45. Jagadish, C. and Pearton, S.J. (2006), Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications, Elsevier, Amsterdam, Netherlands.
  46. Janotti, A. and Van de Walle, C.G. (2009), "Fundamentals of zinc oxide as a semiconductor", Rep. Prog. Phys., 72, 126501. https://doi.org/10.1088/0034-4885/72/12/126501.
  47. Jayaram, D.T., Runa, S., Kemp, M.L. and Payne, C.K. (2017), "Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells", Nanoscale, 9, 7595-7601. https://doi.org/10.1039/C6NR09500C.
  48. Jedsukontorn, T., Ueno, T., Saito, N. and Hunsom, M. (2018), "Mechanistic aspect based on the role of reactive oxidizing species (ROS) in macroscopic level on the glycerol photooxidation over defected and defected-free TiO2", J. Photochem. Photobiol. A Chem., 367, 270-281. https://doi.org/10.1016/j.jphotochem.2018.08.030.
  49. Kairyte, K., Kadys, A. and Luksiene, Z. (2013), "Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension", J. Photochem. Photobiol. B Biol., 128, 78-84. https://doi.org/10.1016/j.jphotobiol.2013.07.017.
  50. Kapteyn, J.C., Van Den Ende, H. and Klis, F.M. (1999), "The contribution of cell wall proteins to the organization of the yeast cell wall", Biochim. Biophys. Acta Gen. Subj., 1426, 373-383. https://doi.org/10.1016/S0304-4165(98)00137-8.
  51. Kelly, P.M., Aberg, C., Polo, E., O'Connell, A., Cookman, J., Fallon, J., Krpetic, Z. and Dawson, K.A. (2015), "Mapping protein binding sites on the biomolecular corona of nanoparticles", Nat. Nanotechnol., 10, 472-479. https://doi.org/10.1038/nnano.2015.47.
  52. Khalil, A.T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z.K., Hassan, D. and Maaza, M. (2017), "Sageretia thea (Osbeck) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential", Artif. Cells Nanomed. Biotechnol., 46(4), 838-852. https://doi.org/10.1080/21691401.2017.1345928.
  53. Khalil, A.T., Ovais, M., Ullah, I., Ali, M., Jan, S.A., Shinwari, Z.K. and Maaza, M. (2020a), "Bioinspired synthesis of pure massicot phase lead oxide nanoparticles and assessment of their biocompatibility, cytotoxicity and in-vitro biological properties", Arab. J. Chem., 13, 916-931. http://dx.doi.org/10.1016/j.arabjc.2017.08.009.
  54. Khalil, A.T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z.K. and Maaza, M. (2020b), "Physical properties, biological applications and biocompatibility studies on biosynthesized single-phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck)", Arab. J. Chem., 13, 606-619. http://dx.doi.org/10.1016/j.arabjc.2017.07.004.
  55. Khan, I., Saeed, K. and Khan, I. (2017), "Nanoparticles: Properties, applications and toxicities", Arab. J. Chem., 12(7), 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011.
  56. Kharazian, B., Hadipour, N.L. an Ejtehadi, M.R., (2016), "Understanding the nanoparticle-protein corona complexes using computational and experimental methods", Int. J. Biochem. Cell Biol.,75, 162-174. https://doi.org/10.1016/j.biocel.2016.02.008.
  57. Kharissova, O.V., Dias, H.V.R., Kharisov, B.I., Perez, B.O. and Perez, V.M.J. (2013), "The greener synthesis of nanoparticles", Trends Biotechnol., 31, 240-248. https://doi.org/10.1016/j.tibtech.2013.01.003.
  58. Kisch, H. (2014), Semiconductor Photocatalysis: Principles and Applications, Wiley, Weinheim, Germany.
  59. Klingshirn, C. (2007), "ZnO: From basics towards applications", Phys. Status Solidi, 244, 3027-3073. https://doi.org/10.1002/pssb.200743072.
  60. Klingshirn, C.F., Waag, A., Hoffmann, A. and Geurts, J. (2010), Zinc Oxide: From Fundamental Properties towards Novel Applications, Springer Science and Business Media, Berlin, Germany.
  61. Kolodziejczak-Radzimska, A. and Jesionowski, T. (2014), "Zinc oxide-from synthesis to application: A review", Materials, 7, 2833-2881. https://doi.org/10.3390/ma7042833.
  62. Kopp, M., Kollenda, S. and Epple, M. (2017), "Nanoparticle-protein interactions: Therapeutic approaches and supramolecular chemistry", Acc. Chem. Res., 50, 1383-1390. https://doi.org/10.1021/acs.accounts.7b00051.
  63. Krupa, A. and Vimala, R. (2016), "Evaluation of tetraethoxysilane (TEOS) sol-gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling", Mater. Sci. Eng. C, 61, 728-735. https://doi.org/10.1016/j.msec.2016.01.013
  64. Kumar, A. and Kumar, J. (2008a), "Defect and adsorbate induced infrared modes in sol-gel derived magnesium oxide nano-crystallites", Solid State Commun., 147, 405-408. https://doi.org/10.1016/j.ssc.2008.06.014.
  65. Kumar, A. and Kumar, J. (2008b), "On the synthesis and optical absorption studies of nano-size magnesium oxide powder", J. Phys. Chem. Solids, 69, 2764-2772. https://doi.org/10.1016/j.jpcs.2008.06.143.
  66. Kumar, R., Umar, A., Kumar, G. and Nalwa, H.S. (2017), "Antimicrobial properties of ZnO nanomaterials: A review", Ceram. Int., 43, 3940-3961. https://doi.org/10.1016/j.ceramint.2016.12.062.
  67. Lead, J.R. and Smith, E.L. (2009), Environmental and Human Health Impacts of Nanotechnology, John Wiley & Sons, Chichester, UK. https://doi.org/10.1002/9781444307504.
  68. Lear, T., Marshall, R., Antonio Lopez-Sanchez, J., Jackson, S.D., Klapotke, T.M., Baumer, M., Rupprechter, G., Freund, H.J. and Lennon, D. (2005), "The application of infrared spectroscopy to probe the surface morphology of alumina-supported palladium catalysts", J. Chem. Phys., 123, 174706. https://doi.org///doi.org/10.1063/1.2101487.
  69. Ledezma, E. and Apitz-Castro, R. (2006), "Ajoene, el principal compuesto activo derivado del ajo (Allium sativum), un nuevo agente antifungico", Rev. Iberoam. Micol., 23, 75-80. https://doi.org/10.1016/S1130-1406(06)70017-1.
  70. Li, C.J. (2016), "Reflection and perspective on green chemistry development for chemical synthesis-Daoist insights", Green Chem., 18, 1836-1838. https://doi.org/10.1039/C6GC90029A.
  71. Li, C.J. and Trost, B.M. (2008), "Green chemistry for chemical synthesis", Proc. Natl. Acad. Sci., 105, 13197-13202. https://doi.org/10.1073/pnas.0804348105.
  72. Li, J., Sang, H., Guo, H., Popko, J.T., He, L., White, J.C., Parkash Dhankher, O., Jung, G. and Xing, B. (2017), "Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa", Nanotechnology, 28, 155101. https://doi.org/10.1088/1361-6528/aa61f3.
  73. Lichterman, M.F., Hu, S., Richter, M.H., Crumlin, E.J., Axnanda, S., Favaro, M., Drisdell, W., Hussain, Z., Mayer, T., Brunschwig, B.S., Lewis, N.S., Liu, Z. and Lewerenz, H.J. (2015), "Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy", Energy Environ. Sci., 8, 2409-2416. https://doi.org/10.1039/C5EE01014D.
  74. Linder, M.B. (2009), "Hydrophobins: Proteins that self assemble at interfaces", Curr. Opin. Colloid Interface Sci., 14, 356-363. https://doi.org/10.1016/j.cocis.2009.04.001.
  75. Lopez, C. and Rodriguez-Paez, J.E. (2017), "Synthesis and characterization of ZnO nanoparticles: Effect of solvent and antifungal capacity of NPs obtained in ethylene glycol.", Appl. Phys. A, 123, 748-764. https://doi.org/10.1007/s00339-017-1339-x.
  76. Lynch, I., Cedervall, T., Lundqvist, M., Cabaleiro-Lago, C., Linse, S. and Dawson, K.A. (2007), "The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century", Adv. Colloid Interface Sci., 134-135, 167-174. https://doi.org/10.1016/j.cis.2007.04.021.
  77. Mahmoudi, M., Bertrand, N., Zope, H. and Farokhzad, O.C. (2016), "Emerging understanding of the protein corona at the nano-bio interfaces", Nano Today, 11, 817-832. https://doi.org/10.1016/j.nantod.2016.10.005.
  78. Martins, N., Petropoulos, S. and Ferreira, I.C.F.R. (2016), "Chemical composition and bioactive compounds of garlic (Allium sativum L) as affected by pre- and post-harvest conditions: A review", Food Chem., 211, 41-50. http://dx.doi.org/10.1016/j.foodchem.2016.05.029.
  79. Matinise, N., Fuku, X.G., Kaviyarasu, K., Mayedwa, N. and Maaza, M. (2017), "ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties and mechanism of formation", Appl. Surf. Sci., 406, 339-347. http://dx.doi.org/10.1016/j.apsusc.2017.01.219.
  80. Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. and Israelachvili, J. (2008), "The role of interparticle and external forces in nanoparticle assembly", Nat. Mater., 7, 527-538. https://doi.org/10.1038/nmat2206.
  81. Miri, A., Sarani, M., Hashemzadeh, A., Mardani, Z. and Darroudi, M. (2018), "Biosynthesis and cytotoxic activity of lead oxide nanoparticles", Green Chem. Lett. Rev., 11(4), 567-572. https://doi.org/10.1080/17518253.2018.1547926.
  82. Miri, A., Khatami, M., Ebrahimy, O. and Sarani, M. (2020), "Cytotoxic and antifungal studies of biosynthesized zinc oxide nanoparticles using extract of Prosopis farcta fruit", Green Chem. Lett. Rev., 13(1), 27-33. https://doi.org/10.1080/17518253.2020.1717005.
  83. Mitchnick, M.A., Fairhurst, D. and Pinnell, S.R. (1999), "Microfine zinc oxide (Z-cote) as a photostable UVA/UVB sunblock agent", J. Am. Acad. Dermatol., 40, 85-90. https://doi.org///doi.org/10.1016/S0190-9622(99)70532-3.
  84. Moharram, A.H., Mansour, S.A., Hussein, M.A. and Rashad, M. (2014), "Direct precipitation and characterization of ZnO nanoparticles", J. Nanomater., 2014, 1-5. https://doi.org/10.1155/2014/716210.
  85. Morkoc, H. and Ozgur, U. (2008), Zinc Oxide: Fundamentals, Materials and Device Technology, Wiley, Weinheim, Germany.
  86. Motulsky, H. (2007), "In GraphPad prism 5: Statistics Guide, GraphPad software inc", Press San Diego, California, USA.
  87. Mu, Q., Jiang, G., Chen, L., Zhou, H., Fourches, D., Tropsha, A. and Yan, B. (2014), "Chemical basis of interactions between engineered nanoparticles and biological systems", Chem. Rev., 114, 7740-7781. https://doi.org/10.1021/cr400295a.
  88. Muhsin, T.M., Al-Zubaidy, S.R. and Ali, E.T. (2001), "Effect of garlic bulb extract on the growth and enzymatic activities of rhizosphere and rhizoplane fungi", Mycopathologia, 152, 143-146. https://doi.org/10.1023/A:1013184613159.
  89. Namvar, F., Rahman, H.S., Mohamad, R., Susan Azizi, S., Tahir, P.M., Chartrand, M.S. and Yeap, S.K. (2015), "Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines", Evid. Based Complementary Altern. Med., 2015, 593014. http://dx.doi.org/10.1155/2015/593014.
  90. Narayan, S., Muldoon, J., Finn, M.G., Fokin, V.V, Kolb, H.C. and Sharpless, K.B. (2005), "Cover picture: 'on water': Unique reactivity of organic compounds in aqueous suspension (Angew. Chem. Int. ed. 21/2005)", Angew. Chem. Int. Ed., 44, 3157-3157. https://doi.org/10.1002/anie.200590069.
  91. Nealon, G.L., Donnio, B., Greget, R., Kappler, J.P., Terazzi, E. and Gallani, J.L. (2012), "ChemInform abstract: Magnetism in gold nanoparticles", ChemInform, 43, 44. https://doi.org/10.1002/chin.201244226.
  92. Nel, A., Xia, T., Madler, L. and Li, N. (2006), "Toxic potential of materials at the nanolevel", Science, 311, 622-627. https://doi.org/10.1126/science.1114397.
  93. Nel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Klaessig, F., Castranova, V. and Thompson, M. (2009), "Understanding biophysicochemical interactions at the nano-bio interface", Nat. Mater., 8, 543-557. https://doi.org/10.1038/nmat2442.
  94. Nosaka, Y. and Nosaka, A.Y. (2017), "Generation and detection of reactive oxygen species in photocatalysis", Chem. Rev., 117, 11302-11336. https://doi.org/10.1021/acs.chemrev.7b00161.
  95. Nozik, A.J. and Memming, R. (1996), "Physical chemistry of semiconductor-liquid interfaces", J. Phys. Chem., 100, 13061-13078. https://doi.org/10.1021/jp953720e.
  96. Parveen, K., Banse, V. and Ledwani, L. (2016), "Green synthesis of nanoparticles: Their advantages and disadvantages", AIP Conf. Proc., 1724, 020048. https://doi.org/10.1063/1.4945168.
  97. Piella, J., Bastus, N.G. and Puntes, V. (2017), "Size-dependent protein-nanoparticle interactions in citrate-stabilized gold nanoparticles: The emergence of the protein corona", Bioconjug. Chem., 28, 88-97. https://doi.org/10.1021/acs.bioconjchem.6b00575.
  98. Prasad, R. (2016), Advances and Applications Through Fungal Nanobiotechnology, Fungal Biology, Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-42990-8.
  99. Punnoose, A., Dodge, K., Rasmussen, J., Chess, J., Wingett, D. and Anders, C. (2014), "Cytotoxicity of ZnO nanoparticles can be tailored by modifying their surface structure: A green chemistry approach for safer nanomaterials", ACS Sustain. Chem. Eng., 2(7), 1666-1673. http://dx.doi.org/10.1021/sc500140x.
  100. Qian, Y., Yao, J., Russel, M., Chen, K. and Wang, X. (2015), "Characterization of green synthesized nano-formulation (ZnO-A. vera) and their antibacterial activity against pathogens", Environ. Toxicol. Pharmacol., 39, 736-746. https://doi.org/10.1016/j.etap.2015.01.015.
  101. Ray, P.C., Yu, H. and Fu, P.P. (2009), "Toxicity and environmental risks of nanomaterials: Challenges and future needs", J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev., 27, 1-35. https://doi.org/10.1080/10590500802708267.
  102. Rideout, D.C. and Breslow, R. (1980), "Hydrophobic acceleration of Diels-Alder reactions", J. Am. Chem. Soc., 102, 7816-7817. https://doi.org/10.1021/ja00546a048.
  103. Rodriguez-Paez, J., Caballero, A., Villegas, M., Moure, C., Duran, P. and Fernandez, J. (2001), "Controlled precipitation methods: Formation mechanism of ZnO nanoparticles", J. Eur. Ceram. Soc., 21, 925-930. https://doi.org/10.1016/S0955-2219(00)00283-1.
  104. Romashchenko, A.V., Kan, T.W., Petrovski, D.V., Gerlinskaya, L.A., Moshkin, M.P. and Moshkin, Y.M. (2017), "Nanoparticles associate with intrinsically disordered RNA-binding proteins", ACS Nano, 11, 1328-1339. https://doi.org/10.1021/acsnano.6b05992.
  105. Romero de Perez, G. (2003), "Microscopia electronica de transmision (MET) area biomedica: teoria y practica [Electron microscopy of transmission (TEM) biomedical area: theory and practice]", Acad. Colomb. Defic. exactas fisicas y Nat. Coleccion Julio Carrizosa Val, 12, 207 (in Spanish).
  106. Saptarshi, S.R., Duschl, A. and Lopata, A.L. (2013), "Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle", J. Nanobiotechnol., 11, 26. https://doi.org/10.1186/1477-3155-11-26.
  107. Shapiro, S. and Caspi, E. (1998), "The steric course of enzymic hydroxylation at primary carbon atoms", Tetrahedron, 54, 5005-5040. https://doi.org/10.1002/chin.199831320.
  108. Shapiro, S. and Caspi, E. (2010), "ChemInform abstract: The steric course of enzymic hydroxylation at primary carbon atoms", ChemInform, 29, 5005-5040. https://doi.org/10.1002/chin.199831320.
  109. Sharma, D., Rajput, J., Kaith, B.S., Kaur, M. and Sharma, S. (2010), "Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties", Thin Solid Films, 519, 1224-1229. https://doi.org/10.1016/j.tsf.2010.08.073.
  110. Sheldon, R.A. (2005), "Green solvents for sustainable organic synthesis: State of the art", Green Chem., 7, 267. https://doi.org/10.1039/b418069k.
  111. Singh, K.R.B., Nayak, V., Tanushri Sarkar, T. and Singh R.P. (2020), "Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application", RSC Adv., 10, 27194-27214. https://doi.org/10.1039/d0ra04736h.
  112. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H. and Mohamad, D. (2015), "Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism", Nano-Micro Lett., 7, 219-242. https://doi.org/10.1007/s40820-015-0040-x.
  113. Stankic, S., Sternig, A., Finocchi, F., Bernardi, J., Diwald, O., (2010), "Zinc oxide scaffolds on MgO nanocubes", Nanotechnology, 21, 355603. https://doi.org/10.1088/0957-4484/21/35/355603.
  114. Stankic, S., Suman, S., Haque, F. and Vidic, J. (2016), "Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties", J. Nanobiotechnol., 14, 73. https://doi.org/10.1186/s12951-016-0225-6.
  115. Sulaiman, G.M., Tawfeeq, A.T. and Naji, A.S. (2018), "Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines", Artif. Cells, Nanomed. Biotechnol., 46(6), 1215-1229. https://doi.org/10.1080/21691401.2017.1366335.
  116. Tansey, M.R. and Appleton, J.A. (1975), "Inhibition of fungal growth by garlic extract", Mycologia, 67, 409-413. https://doi.org/10.2307/3758431
  117. Timonin, M.I. and Thexton, R.H. (1951), "The rhizosphere effect of onion and garlic on soil microflora1", Soil Sci. Soc. Am. J., 15, 186. https://doi.org/10.2136/sssaj1951.036159950015000C0042x.
  118. Tripathi, D.K., Ahmad, P., Sharma, S., Chauhan, D.K. and Dubey, N.K. (2017), Nanomaterials in Plants, Algae, and Microorganisms: Concepts and Controversies, Elsevier, London, UK.
  119. Trost, B.M. (1991), "The atom economy-a search for synthetic efficiency", Science, 254, 1471-1477. https://doi.org/10.1126/science.1962206.
  120. Umar, H., Kavaz, D. and Rizaner, N. (2019), "Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines", Int. J. Nanomed., 14, 87-100. https://doi.org/10.2147/IJN.S186888.
  121. Unal, R., Yousef, A.E. and Dunne, C.P. (2002), "Spectrofluorimetric assessment of bacterial cell membrane damage by pulsed electric field", Innov. Food Sci. Emerg. Technol., 3, 247-254. https://doi.org/10.1016/S1466-8564(02)00033-4.
  122. Virkutyte, J. and Varma, R.S. (2013), Sustainable Nanotechnology and the Environment: Advances and Achievements, ACS Publications, Washington. USA. https://doi.org/10.1021/bk-2013-1124.ch002.
  123. Woll, C. (2007), "The chemistry and physics of zinc oxide surfaces", Prog. Surf. Sci., 82, 55-120. https://doi.org/10.1016/j.progsurf.2006.12.002.
  124. Xing, B., Vecitis, C.D. and Senesi, N. (2016), Engineered Nanoparticles and the Environment: Biophysicochemical Processes and Toxicity, John Wiley & Sons, Hoboken, USA. https://doi.org/10.1002/9781119275855.
  125. Yang, L., Wang, J. and Xiang, L. (2015), "Hydrothermal synthesis of ZnO whiskers from ɛ-Zn(OH)2 in NaOH/Na2SO4 solution", Particuology, 19, 113-117. https://doi.org/10.1016/j.partic.2014.06.010.
  126. Yoshida, S., Kasuga, S., Hayashi, N., Ushiroguchi, T., Matsuura, H. and Nakagawa, S. (1987), "Antifungal activity of ajoene derived from garlic", Appl. Environ. Microbiol., 53, 615-617. https://doi.org/10.1128/AEM.53.3.615-617.1987
  127. Zar, J.H. (2014), Bioestatistical Analysis, Pearson Education Limited, Harlow, UK.
  128. Zhang, Z. and Yates, J.T. (2010), "Effect of adsorbed donor and acceptor molecules on electron stimulated desorption: O2/TiO2(110)", J. Phys. Chem. Lett., 1, 2185-2188. https://doi.org/10.1021/jz1007559.
  129. Zhang, X. and Yang, S. (2011), "Nonspecific adsorption of charged quantum dots on supported zwitterionic lipid bilayers: Real-time monitoring by quartz crystal microbalance with dissipation", Langmuir, 27, 2528-2535. https://doi.org/10.1021/la104449y.
  130. Zhang, Z. and Yates, J.T. (2012), "Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces", Chem. Rev., 112, 5520-5551. https://doi.org/10.1021/cr3000626.

피인용 문헌

  1. Green Synthesis and Characterizations of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Leaf Extracts of Coffee (Coffea arabica) and Its Application in Environmental Toxicity Reduction vol.2021, 2021, https://doi.org/10.1155/2021/3413350