Acknowledgement
This study was financially supported by the Deanship of Scientific Research at King Khalid University (Grant number R.G.P.2/56/40).
References
- Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stab. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
- Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
- Akbas, S.D. (2018a), "Forced vibration analysis of cracked nanobeams", J. Braz. Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1.
- Akbas, S.D. (2018b), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
- Akbas, S.D. (2018c), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., Int. J., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
- Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392.
- Ansari, R. and Rouhi, H. (2013), "Nonlocal analytical Flügge shell model for the vibrations of double-walled carbon nanotubes with different end conditions", Int. J. Appl. Mech., 80(2), 021006. https://doi.org/10.1142/S179329201250018X.
- Ansari, R., Rouhi, S. and Aryayi, M. (2013), "Nanoscale finite element models for vibrations of single-walled carbon nanotubes: atomistic versus continuum", Appl. Math. Mech., 34(10), 1187-1200. https://doi.org/10.1007/s10483-013-1738-6.
- Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, Int. J., 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567.
- Benguediab, S., Tounsi, A., Ziadour, M. and Semmah, A. (2014), "Chirality and scale effects on mechanical and buckling properties of zigzag double-walled carbon nanotubes", Compos. Part B Eng, 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020.
- Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with nano-fiber reinforced polymer (NFRP)", Comput. Concrete, Int. J., 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
- Brischotto, S. (2015), "A continuum shell model including van der Waals interaction for free vibrations of double-walled carbon nanotubes", CMES, 104, 305-327. https://doi.org/10.3970/cmes.2015.104.305.
- Budiansky, B. and Sanders, J.L. (1963), On the Best First-Order Linear Shell Theory, Progress in Applied Mechanics, Prager Anniversary Volume, Japan.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science and Business Media, New York, USA.
- Flugge, W. (1962), Handbook of Engineering Mechanics, McGraw-Hill, New York, USA.
- Flugge, S. (1973), Stresses in Shells, Springer, Berlin, Germany.
- Gao, Y. and An, L. (2010), "A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm", Physica E Low Dimens. Syst. Nanostruct., 42(9), 2406-2415. https://doi.org/10.1016/j.physe.2010.05.022.
- Ghavanloo, E., Daneshmand, F. and Rafiei, M. (2010), "Vibration and instability analysis of carbon nanotubes conveying fluid and resting on a linear viscous elastic Winkler foundation", Physica E Low Dimens. Syst. Nanostruct., 42, 2218-2224. https://doi.org/10.1016/j.physe.2010.04.024.
- Gibson, R.F., Ayorinde, E.O. and Wen, Y.F. (2007), "Vibrations of carbon nanotubes and their composites: a review", Compos. Sci. Technol., 67(1), 1-28. https://doi.org/10.1016/j.compscitech.2006.03.031.
- Gupta, S.S., Bosco, F.G. and Batra, R.C. (2010), "Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration", Comput. Mater. Sci., 47(4), 1049-1059. https://doi.org/10.1016/j.commatsci.2009.12.007.
- He, X.Q., Kitipornchai, S. and Liew, K.M. (2005), "Buckling analysis of multi-walled carbon nanotubes: A continuum model accounting for van der Waals interaction", J. Mech. Phys. Solids, 53, 303-326. https://doi.org/10.1016/j.jmps.2004.08.003.
- Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. https://doi.org/10.1016/j.compstruct.2014.06.023.
- Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56, 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010.
- Hussain, M., Naeem., M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.
- Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S. (2009), "Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Comput. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002.
- Kroner, E. (1967), "Elasticity theory of materials with long range cohesive forces", Int. J. Solids Struct., 3(5), 731-742. https://doi.org/10.1016/0020-7683(67)90049-2.
- Lee, H.L. and Chang, W.J. (2008), "Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory", J. Appl. Phys., 103(2), 024302. https://doi.org/10.1063/1.2822099.
- Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells" Int. J. Mech. Sci., 41, 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
- Manevitch, L.I., Smirnov, V.V., Strozzi, M. and Pellicano, F. (2017), "Nonlinear optical vibrations of single-walled carbon nanotubes", Int. J. Non Linear Mech., 94, 351-361. http://dx.doi.org/10.1016/j.ijnonlinmec.2016.10.010
- Naeem, M.N. and Sharma, C.B. (2000), "Prediction of natural frequencies for thin circular cylindrical shells", Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 214(10), 1313-1328. https://doi.org/10.1243/0954406001523290.
- Narendar, S. (2011), "Terahertz wave propagation in uniform nanorods: A nonlocal continuum mechanics formulation including the effect of lateral inertia", Physica E Low Dimens. Syst. Nanostruct., 43, 1015-1020. https://doi.org/10.1016/j.physe.2010.12.004
- Natsuki, T., Qing, Q.N. and Morinobu, E. (2007), "Wave propagation in single-walled and double-walled carbon nanotubes filled with fluids", J. Appl. Phys., 101(3), 034319-034319-5. https://doi.org/10.1063/1.2432025.
- Paliwal, D.N., Kanagasabapathy, H. and Gupta, K.M. (1995), "The large deflection of an orthotropic cylindrical shell on a Pasternak foundation", Compos. Struct., 31(1), 31-37. https://doi.org/10.1016/0263-8223(94)00068-9.
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41, 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.
- Pradhan, S.C. and Phadikar, J.K. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325(1-2), 206-223. https://doi.org/10.1016/j.jsv.2009.03.007.
- Rouhi, H., Ansari, R. and Arash, B. (2012), "Vibration analysis of double-walled carbon nanotubes based on the non-local donnell shell via a new numerical approach", Int. J. Mech. Sci., 37, 91-105. https://doi.org/10.1016/S0020-7225(02)00210-0.
- Safeer, M., Taj, M. and Abbas, S.S. (2019), "Effect of viscoelastic medium on wave propagation along protein microtubules", AIP Adv., 9(4), 045108. https://doi.org/10.1016/0263-8223(94)00068-9.
- Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E Low Dimens. Syst. Nanostruct., 43, 182-191. https://doi.org/10.12989/scs.2011.11.1.059.
- Strozzi, M. and Pellicano, F. (2018), "Linear vibrations of triplewalled carbon nanotubes", Math. Mech. Solids, 23(11), 1456-1481. http://dx.doi.org/10.1177/1081286517727331.
- Strozzi, M and Pellicano, F. (2019), "Nonlinear resonance interaction between conjugate circumferential flexural modes in single-walled carbon nanotubes", Shock Vib., 2019, 3241698. https://doi.org/10.1155/2019/3241698.
- Strozzi, M., Smirnov, V.V., Manevitch, L.I. and Pellicano, F. (2018), "Nonlinear vibrations and energy exchange of single-walled carbon nanotubes: Radial breathing modes", Compos. Struct., 184, 613-632. http://dx.doi.org/10.1016/j.compstruct.2017.09.108.
- Strozzi, M., Smirnov, V.V., Manevitch, L.I. and Pellicano, F. (2020), "Nonlinear normal modes, resonances and energy exchange in single-walled carbon nanotubes", Int. J. Non Linear Mech., 120, 103398. https://doi.org/10.1016/j.ijnonlinmec.2019.103398.
- Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94(11), 7281-7287. https://doi.org/10.1063/1.1625437.
- Swain, A., Roy, T. and Nanda, B.K. (2013), "Vibration behavior of single-walled carbon nanotube using finite element", Int. J. Theor. Appl. Res. Mech. Eng., 2, 129-133.
- Usuki, T. and Yogo, K. (2009), "Beam equations for multi-walled carbon nanotubes derived from Flugge shell theory", Proc. Math. Phys. Eng. Sci., 465(2104), 1199-1226. https://doi.org/10.1098/rspa.2008.0394.
- Wang, Q. and Varadan, V.K. (2006), "Vibration of carbon nanotubes studied using nonlocal continuum mechanics", Smart Mater. Struct., 15(2), 659. https://doi.org/10.1088/0964-1726/16/1/022.
- Wang, J. and Gao, Y. (2016), "Nonlocal orthotropic shell model applied on wave propagation in microtubules", Appl. Math. Model., 40(11-12), 5731-5744. https://doi.org/10.1016/j.apm.2016.01.013.
- Xu, K.U., Aifantis, E.C. and Yan, Y.H. (2008), "Vibrations of double-walled carbon nanotubes with different boundary conditions between inner and outer tubes", J. Appl. Mech., 75(2), 021013-1. https://doi.org/10.1115/1.2793133.
- Yang, J., Ke, L.L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E Low Dimens. Syst. Nanostruct., 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035.
- Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., Int. J., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
- Yoon, J., Ru, C.Q. and Mioduchowski, A. (2002), "Noncoaxial resonance of an isolated multiwall carbon nanotube", Phys. Rev. B, 66(23), 2334021-2334024. https://doi.org/10.1103/PhysRevB.66.233402.
- Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct., Int. J., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043
- Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Vibration analysis of thin cylindrical shells using wave propagation approach", J. Sound Vib., 239(3), 397-403. https://doi.org/10.1006/jsvi.2000.3139
- Zou, R.D. and Foster, C.G. (1995), "Simple solution for buckling of orthotropic circular cylindrical shells", Thin-Wall. Struct., 22(3), 143-158. https://doi.org/10.1016/0263-8231(94)00026-V.